TotalControl

Workshop Online, 10th December 2020

Work Package 3: Turbine controller enhancements Ervin Bossanyi

Funded by the Horizon 2020 programme of the European Union

Task 3.1 (completed)

develops new turbine controller features of relevance in the context of wind farm control, and uses simulation modelling to test and evaluate them.

- Based on Samsung 7MW demonstration wind turbine (ORE Catapult, Levenmouth).
- Aeroelastic model developed and reference loadset generated.
- Active power control for grid ancillary services: Virtual Synchronous Machine concept for inverter control
- Active tower damping offshore
- Power set-point reduction algorithms*
- Model predictive controller*
- LiDAR-assisted control for load reduction*
- Individual pitch control using tower-top sensors*
 - *For field tests in Task 3.2

Task 3.2

implements some controller enhancements on the 7MW turbine at Levenmouth and evaluates their performance in the field.

- Forward-facing scanning LiDAR to measures the inflow
- Rear-facing LiDAR to measure effects on the wakes
- Flow model for induction zone (LiDAR+CFD)
- Yaw misalignment tests
- Power reduction tests
- IPC tests
- LiDAR-assisted control tests
- Delta control tests
- Fast frequency response tests
- Model predictive control implementation

7MW model & loads

(Deliverable D_{3.1}, OREC)

Updated *Bladed* model matches real power performance

- *Bladed* model available to partners
- Reference loadset calculated & available to partners

Down-regulation (Deliverable D_{3.2}, DTU)

Maintaining rated rotor speed

With decreasing rotor speed

Different effects on turbine loads

Down-regulation (Deliverable D_{3.2}, DNV GL) Implementation in full turbine controller: Bladed simulations

7000

6000

5000

4000

3000 2000

1000

-1000

100

200

₹.

300

time (s)

400

500

600

80pc Power (time histories)

Important to consider the speed exclusion zone!

Virtual Synchronous Machine (VSM)

Fast frequency response through modifications to the wind turbine converter control system (Deliverable D3.2, SINTEF)

Scheme 1: VSM converter controlling DC voltage - energy drawn only from DC-link capacitor Scheme 2: VSM converter controlling active power - wind turbine inertia can also contribute, giving greater capability

Active damping of tower loads for offshore turbines

Deliverable D3.3 (SINTEF)

- Top-down controller design using high-resolution model (~300 states)
- Can we steer the direction of tower oscillation, to control how much fatigue is accumulated at different points around the tower circumference?

➤Yes, but no particular advantage identified

Can we control generator torque and/or blade pitch to provide effective damping and rejection of ocean wave loads when the turbine is idling?
Yes, need different strategies, including changing the yaw direction, depending on wind/wave misalignment, rotor speed, wind speed and wind variability.

Model predictive turbine control

Deliverable D3.4 (DNV GL)

- Using Bladed to generate linear models
- Closing the loop before posing the optimisation problem
- Reducing model order of closed-loop model
- Communicate over UDP to allow Matlab to talk to Bladed simulations
- Good success with turbulent and deterministic tests
- Handles the transition around rated wind speed
- Method developed with a 2MW generic turbine, then applied directly to Samsung 7MW without any tuning

BLADED simulations

LiDAR-assisted control Deliverable D_{3.5} (DNV GL) Mean Pitch Angle - LAC DTU Spinner LiDAR Mean Pitch Angle - Baseline Tower Base Nodding - LAC Tower Base Nodding - Baseline 60 40 20 Tower Mz, Location=Mbr 1 End 1. % difference to Baseline -3 -60 -5 -80 -6 60 80 -20 20 40 -60 -40 -7 Y [m] LiDAR scanning pattern 20 22 24 8 10 12 14 16 18 6

Wind Bin [m/s]

z [m]

Tower base fatigue load reduction vs wind speed

Individual Pitch Control

1P & 2P IPC; Blade root or tower top sensors vs no IPC

LiDAR installation & measurements Deliverable D₃.6 (DTU / OREC) 1. Forward facing 'Spinner LiDAR' to measure inflow

19 m [m

Both installations completed in February 2020

 $v = 0.99x, R^2 = 0.96$

- Calibrated vs met mast
- Spinner LiDAR: data provided for D3.9, and providing inflow measurements for D3.7
- WindScanner providing wake data for D_{3.7}: yaw misalignment and power reduction tests

Wind field model for induction zone

Deliverable D3.6 (DTU / OREC)

- Improve understanding of turbine induction zone, and advection from LiDAR measurement to rotor plane
- Simultaneous data from mast, Spinner LiDAR and turbine (SCADA)
- Correlation analysis with time lags, to identify advection time
- Comparison with CFD flow modelling and advection time from vortex cylinder model
- Application to LiDAR-assisted control

Controller field testing

Deliverable D_{3.7} (OREC, DNV GL, DTU)

- Yaw misalignment tests nearly complete (rear LiDAR to measure wake deflection)
- Controller upgraded to include the various new features to be tested
- **Down-regulation** (DTU algorithm as D3.2): ready pending final approval
- **Delta control** (DNV GL algorithm): ready and approved (simulations reported; not in Task3.1)
- **2P IPC** (as D3.5): ready and approved
- Tower top IPC (as D_{3.5}): ready and approved pending tower strain gauge \rightarrow PLC connection
- LiDAR-assisted control (as D3.5) ready pending final approval
- Fast frequency response (DNV GL algorithm): in preparation; not in Task 3.1

D3.7: yaw misalignment tests

- Running since late May
- Step-by-step: requirement to check loads before moving to higher wind speeds and yaw angles
- Good coverage of test matrix as of November
- <u>+</u>25° yaw in progress

YAW	TI	WIND SPEED (m/s)										
		4	5	6	7	8	9	10	11	12	13	14
10	5%											
	10%		11	16	1	6	11	6	8	4	1	1
	15%	3	1	8	5	8	11	6	4	3		
-10	5%			1		1	1		4	1	3	1
	10%	4	2	9	11	5	6	9	13	3	2	2
	15%		1	2								
20	5%											
	10%											
	15%	2	2	3	6	2						
-20	5%											
	10%	2		1	1	4	1					
	15%		1	4	2							

Delta control Deliverable D_{3.7} (DNV GL)

- Thrust reduction (to decrease wake effects at downstream turbines)
- Maximise thrust reduction while minimising power reduction
- Change the fine pitch angle, torque-speed characteristic and maximum torque

Simulation results:

Delta control

Deliverable D3.7 (DNV GL)

- Rotor speed will change
- Need to maintain stall margin
- Careful attention to interaction with the speed exclusion zone, to avoid any loading increases
- Report completed by DNV GL (no deliverable in Task 3.1)
- Testing approved by ORE

Model predictive control implementation

Deliverable D₃.8 (DNV GL)

- Aim was to create an MPC algorithm that could run on the 7MW turbine PLC
- Even harder than expected: no practical solution in sight
- New aim to write a survey paper or report: drawing on solutions from the literature and the work reported in D3.4, and explaining all the real-world challenges for MPC on wind turbines
- Will fill the gap between academia and industry in the existing literature, which should catalyse a wider discussion with other experts around the world

WP₃ schedule

- Finalise the D3.9 report on the induction zone model (January 2021)
- Complete Fast Frequency Response implementation (January 2021)
- Prepare the report on MPC (first half of 2021)
- Complete and report all the controller field tests over the coming year (need to dovetail tests as and when they are ready and approved and the wind conditions are appropriate)
- Project ends: December 2021

