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Figure 1: A block diagram of a wind turbine controller based around a state observer. The observer is augmented
with observations of bulk environmental effects, and several integral states.

ExecuƟve Summary
The control of an offshore wind turbine involves tradeoffs between production (revenue), structural
loading, and actuator wear. In order to study these tradeoffs, there is a need for tools to rapidly
synthesize wind turbine controllers of a varied nature. A framework for linear-quadratic (LQR) control
synthesis is developed, and applied to case studies involving directional control of fatigue in monopile
foundations, and active damping of wave-driven tower resonance when the turbine is idling.

The control framework is shown in Fig. 1. The controller itself consists of an observer, which
estimates the states of the plant (wind turbine); and a control law, which applies some gain to each of
the states, the output being the blade pitch, electric power, and yaw angle commands sent to the wind
turbine. In turn, the turbine provides sensor measurements to the observer: rotor speed, blade pitch,
yaw angle, electric power, nacelle velocity (or acceleration), anemometer wind speed, and anemometer
wind angle. These are the sensors that are typically available for use in the control of a modern
offshore wind turbine.

The observer in Fig. 1 is based on a high-order (around 300 state variables) model of the wind
turbine. The controller can then be reduced in order after finding the optimal gains: the approach
is “top-down”. This differs from the usual “bottom-up” approach to LQR control, based on a low-
order wind turbine model with perhaps 10 state variables. Both approaches can result in workable
controllers; but in the course of computing the optimal gains, the top-down approach has more freedom,

PROJECT
TotalControl

REPORT NUMBER
D3.3

VERSION
1.0 4 of 81



TotalControl – Project no. 727680

and may find opportunities for control actions that would not be visible to the simpler model.
Applying the controller of Fig. 1 to the problem of foundation load reduction, the gains were

computed to minimize a chosen performance index, and so give an “optimal” tradeoff between load
in the foundation and actuator usage. Different types of controllers are obtained by setting different
performance indices. Figure 2 shows the power spectral density of collective blade pitch 𝛽0, individual
blade pitch components 𝛽𝑐 and 𝛽𝑠, electric power 𝑃𝑒, rotor speed Ω, and nacelle fore-aft (v𝑛)𝑋 and
side-to-side (v𝑛)𝑌 motions. Three controllers are compared: one which controls only the rotor speed,
one which applies collective blade pitch for active damping and wave-load rejection, and a third
which applies both collective and individual blade pitch. Both load-reducing controllers are effective
at limiting tower fore-aft motions, but with individual blade pitch it is also possible to reduce the
motions in the side-to-side direction. The result is that the tower resonant vibrations are almost
completely eliminated.

When idling in low winds, the degree of damping that can be provided by pitching the blades is a
strong function of the rotor speed. At a rotor speed of 0.3 rad/s, the damping becomes fully effective,
in the sense that the resonant peak of tower motion can be essentially eliminated: Fig. 3. At a rotor
speed of 0.1 rad/s, on the other hand, pitching the blades is not effective. An alternative strategy of
yawing the rotor perpendicular to the incoming waves and applying generator torque can also provide
some damping, even when the rotor speed is low.

1 Background
The dynamics of a wind turbine are to a large extent determined by its controller. The controller
must provide the basic control of rotor speed and generator electric power; but it may also be called
upon to assist in countering the various environmental loads on the turbine structures, as well as
provide services to the electric grid, in the form of tracking an electric power command. These control
objectives are partly in conflict, and there is a three-way tradeoff between production (revenue),
structural loading, and actuator wear.

It is important to consider these tradeoffs when studying the system dynamics of wind turbines
and wind power plants. This involves modifying the design and tuning of the wind turbine controller.
Reference controllers are available (van der Hooft et al. 2003, Jonkman et al. 2009, Hansen and
Henriksen 2013, Mulders and van Wingerden 2018), but these are single designs, and none of them
include the complete set of features required to study all the relevant tradeoffs. It is also necessary to
retune the control gains and filter parameters in order to study the tradeoffs; and, since the tuning may
influence the interaction between separate control loops, then the stability properties and performance
must be checked for each tuning.

Consequently, there is a need for tools to rapidly synthesize wind turbine controllers of a varied
nature. Within the confines of linear systems theory, linear-quadratic (LQR) control synthesis –
whether in its time-domain or ℋ∞ frequency-domain forms – provides precisely what is needed. We
can establish a cost function in terms of the tradeoffs in which we are interested, and vary the relative
weights. The structure and tuning of the resulting controller is then determined algorithmically,
saving the repetitive manual work that would be needed with a multiple-loop proportional-integral
(PI) approach.

There is a long precedence of applying linear-quadratic synthesis to wind energy systems: Liebst
(1985), Wright (2004), Munteanu et al. (2005), Bottasso et al. (2013), and Fleming et al. (2013) are
some relevant examples. When it comes to the details of the implementation, there are a wide variety
of options, no single one of which is “correct”: different approaches can lead to a workable controller.
To a degree, then, the choice is philosophical. One thing the existing approaches have all had in
common is that they have been built “bottom-up” around a minimal model of the wind turbine. The
designer studies the dynamics, and selects a minimal number and type of degrees-of-freedom that
approximate the plant behavior over a relevant frequency band: for instance, controller models with
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Figure 2: Spectra of control actions and nacelle motions under realistic turbulent wind and ocean wave loading.
The tower motions are here shown in the global coordinate system, with 𝑋 downwind and 𝑌 cross-wind. The
𝑋 axes have units of log1 0(Hz). Light: control of rotor speed only; medium: active damping with collective
blade pitch; dark: active damping with individual blade pitch.
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Figure 3: Spectra of nacelle 𝑋 displacement, for three rotor speeds, with and without active damping control.
The plot at lower right shows the spectra of collective blade pitch for the same three cases.
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2, 6, 9, and 33 states were employed in the references cited previously.
The design of controllers for complex systems may benefit from a “top-down” approach, where a

high(er)-fidelity system model is employed in the tuning of gains and as a state observer. Stevens
and Lewis (2003), for instance, mention a case where such an approach was necessary for model-based
control of an aircraft engine. Zhou et al. (1996) also recommend, from the perspective of robustness,
to design a controller around a refined system model, and then simplify the controller, rather than
the alternative of designing the controller around a simplified system model.

We should not be critical of the use of simplified models in control design and state observa-
tion: experience has shown that these often provide good performance. However, it is of interest to
explore top-down control synthesis, and the various questions that arise along the way: Is there a
convenient, automated way to ensure controllability and observability? What are the practical limits
of algebraic Riccati equation solvers? How can one recognize a good observer tuning? How can we
understand the resulting controller gains and system response? The motivation is ultimately to apply
the approach to design a wind power plant supervisory controller that can make intelligent tradeoffs
between production, grid services, and wind turbine loads.

Here, as an initial investigation, we apply the top-town philosophy to a more restricted case: the
design of load-rejecting control functions for a single offshore wind turbine. (Bossanyi 2003) Two
themes are considered in particular. The first theme, following a recent thesis by Smilden (2019),
involves the directional control of alternating loads on the foundation. Here we define the goal to
“steer” the load away from a certain critical location, where there is assumed to be a material flaw.
The second theme is active damping during idling, where the objective is to damp wave-driven resonant
vibrations of the foundation, at some cost in electric power drawn from the grid.

We begin in Section 2 with a derivation of the wind turbine model. This is best understood in
relation to the previous (Merz 2018) derivation of the aeroelastic equations in STAS. The present
derivation – as well as the implementation of the equations in the accompanying software – have been
streamlined, in particular by absorbing into the transformation matrices some of the “extra” terms
that arise when taking time derivatives and linearizing.

One way of understanding the dynamics of complex systems is by observing how power flows
and oscillates within the system: Section 2.1.9 provides the relevant theory. In particular, the
steady, second-order, dissipative power can explain which elements of the system are providing the
all-important dissipation of energy that causes oscillations to decay – or, if we are unlucky, where
energy is being fed into the system to cause instability.

The controllers are evaluated under realistic conditions of atmospheric turbulence and ocean waves,
using the spectral analysis techniques of Section 2.1.10. The control of wind turbines in a plant may
include yawing with respect to the incoming wind, and the rotationally-sampled turbulence spectra
have been extended in Section 2.1.11 to account for yaw.

The modal dynamics of a 10 MW offshore wind turbine (Bak et al. 2013, Anaya-Lara et al. 2018)
are investigated in Section 2.3, with a particular emphasis on resonant vibration of the foundation.
It is found that the relevant dynamics, including active damping, are captured by a selection of four
modes. This puts the dynamics – namely, the interaction between the aeroelastic wind turbine and
active load controls – within the realm of human-understandability. Some effort is made to describe in
detail the modes, showing how interaction between control and plant states “blend” the modes from
each.

Section 3 presents the proposed control architecture, and an abbreviated derivation is given for the
solution to the optimal observer and control gains. It is this solution that constitutes the synthesis –
the structure and tuning – of the controller, and the setup of the optimization problem is critical to
achieving a design with favorable performance. The controller includes simplistic models of the wind
and waves that act on the turbine, which give it the ability to anticipate, to some extent, the incoming
disturbances.

The directional control of foundation loads is analyzed in Section 4. A series of controllers are
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synthesized, progressively introducing load-reduction capabilities. A biased strategy, attemping to
steer the motion of the foundation in a particular direction, is compared against a strategy that
attempts to reject motions in all directions. While it is possible to steer the motion to some extent,
it appears that it is more practical to reject motions uniformly. It is shown – in fact, it is a natural
outcome of the optimal control synthesis – that by modulating individual blade pitch the load-rejecting
performance of the controller is improved.

It is demonstrated in Section 5 that both the proposed active-damping strategies can reduce
resonant vibrations of the support structure, when the wind turbine is idling in low winds. The use of
blade pitch offers the potential for a higher level of damping, but only when the rotor speed is above a
certain minimum, roughly 0.2 rad/s. An alternate strategy using the generator can provide a smaller
but still important amount of damping under low-speed rotation. Since the aerodynamic dissipation
is small, it is important to tune the controller such that the generator acts both to extract energy
from the oscillating tower and feed it into the rotor; and to extract energy from the rotor and feed it
into the grid.

1.1 NotaƟon and coordinate systems
(The following is a slightly modified excerpt from Merz (2018); further details can be found in that
reference.)

Vectors and matrices are denoted with a bold font, for instance the state vector x and matrix A.
When a vector or matrix has a certain coordinate system as a basis, then this is indicated by the use of
a superscript. It may be important to keep track of two coordinate systems, one the basis in which the
components of a vector are expressed, and another relative to which the vector is measured. In this
case the basis is indicated by a superscript, and the relative is indicated by a slash in the subscript.
Thus the position of a node r – that is, the vector from the origin to the node – might be measured
relative to the global coordinate system, but the components expressed in a local body coordinate
system; this would be written as r𝐵

/𝑔.
Subscripts are frequently used in other contexts as well. When a spatial vector has a subscript,

for instance the induced velocity V𝑖, then one of the spatial components is indicated by an additional
subscript outside a parentheses; so the 𝑍𝑟 component of the induced velocity, a scalar, would be
written (V𝑖)𝑧. Where there is no need to be so explicit, the shorthand convention v = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] is
also used. Subscripts never denote derivatives.

The structural and aerodynamic analyses employ a variety of coordinate systems. Most of these
are sketched in Fig. 4. For clarity, the following description is given as if the structure were rigid. The
formulation of structural displacements (Merz 2018) allows for elastic rotations which may misalign
the various coordinate systems.

The foundation coordinate system is located at the bottom node of the foundation. The 𝑋𝐹 axis
is parallel with the undisturbed ocean surface and indicates the direction of zero yaw angle; at zero
yaw, the 𝑋𝐹 axis points downwind. The 𝑍𝐹 axis is normal to the undisturbed ocean surface and
typically passes through the center of the undeformed tower.

The tower coordinate system is located at the base of the tower, or equivalently, for offshore
turbines, the top of the transition piece. In the undeformed state it is aligned with the foundation
coordinate system.

The yaw coordinate system indicates the position of the yaw bearing. At zero yaw and no de-
formation, the yaw coordinate system is aligned with the tower and foundation coordinate systems.
A positive yaw angle 𝜒 involves a rotation about the 𝑍𝑦 = 𝑍𝑇 axis.

The nacelle coordinate system is aligned with the axis of rotation of the driveshaft. The 𝑍𝑛 axis
points in the direction of the 𝑋𝑦 axis, except that it is rotated about the 𝑌 𝑦 axis by the driveshaft tilt
angle 𝛿: positive tilt angle raises the rotor hub. Note that the yaw coordinate system is the reference
coordinate system for the nacelle structure. The “nacelle” coordinate system serves as an intermediate
frame against which driveshaft rotation is measured.
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Figure 4: Important coordinate systems and angles used in the wind turbine model. The wind turbine structures
are represented by finite beam elements. Rotating nodes are shown by black dots, and fixed nodes by gray dots.
White dots show joints. All joints restrain 5 degrees-of-freedom, allowing one rotational degree-of-freedom, with
the exception of the front driveshaft bearing, which restrains only 𝑋𝑛 and 𝑌 𝑛 displacements.
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Figure 5: The airfoil and blade section coordinate systems.

Thus, the driveshaft coordinate system is rotated, with respect to the nacelle coordinate system,
by the azimuth angle Ψ about the 𝑍𝑑 = 𝑍𝑛 axis.

The rotorplane coordinate system is used in the aerodynamic analysis. It is aligned with the
nacelle coordinate system, but has its origin at the center of the rotor hub. Quantities expressed in
rotorplane coordinates have in general an “axial” component, in the 𝑍𝑟 direction, and a “tangential”
component, which is tangent to a particular radius, for instance

(V𝑟
𝑖 )𝑡 ∶= (V𝑟

𝑖 )𝑥 sinΨ𝑏 + (V𝑟
𝑖 )𝑦 cosΨ𝑏. (1)

This decomposition of the coordinates is convenient, because the spanwise component of relative
velocity is neglected when computing aerodynamic forces.

The remaining coordinate systems occur in triplets, one associated with each blade. The hub
coordinate system is not shown in Fig. 4. Its origin is the same as the rotorplane coordinate system,
at the center of the rotor hub, and the 𝑋ℎ axis points from the axis of rotation to the pitch bearing.
The hub coordinate system is aligned with the driveshaft coordinate system for Blade 1, and is rotated
about the 𝑍ℎ = 𝑍𝑑 axis by the blade offset angle of 2𝜋/3 for Blade 2 and 4𝜋/3 for Blade 3.

The blade coordinate system is located at the pitch bearing. It is rotated, with respect to the hub
coordinate systesm, about the 𝑌 ℎ = 𝑌 𝑏 axis by the blade cone angle 𝜙. (The blade cone angle is not
shown in Fig. 4.)

The blade pitch coordinate system is offset from the hub coordinates system by rotation about
the 𝑋𝑏 = 𝑋𝑝 axis by the negative of the pitch angle. The negative sign is required such that, by
convention, positive pitch rotates the leading edge of the blades into the wind.

There are additional coordinate systems associated with each blade element in the aerodynamic
analysis. These are shown in Fig. 5. The section coordinate system is offset from the pitch coordinate
system by rotation about the 𝑋𝑝 = 𝑋𝑠 axis by the negative of the blade aerodynamic twist angle.
The airfoil coordinate system is the traditional one used to represent lift and drag, or normal and
chordwise, forces. The origin is one quarter-chord aft from the leading edge, and the 𝑋𝑎 axis lies
along the chordline.

Structural finite elements also have associated nodal and section coordinate systems; descriptions
of these can be found in Merz (2018).

2 Modal dynamics of a grid-connectedoīshorewind turbineonamonopile found-
aƟon

Modal analysis makes the dynamics of complex systems human-understandable. The validity of the
modes is limited to local perturbations about a chosen operating point; though what constitutes “local”
depends on the degree of nonlinearity.1 In any case, in the neighborhood of the operating point, the
modes break the system response down into simple pieces, each of which can be studied in isolation,
with their superposition providing the total response.

1For linear systems, the modes obtained at any operating point are valid globally.
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2.1 Theory
Let the dynamics of a system be described by the nonlinear equations

N𝑑x
𝑑𝑡 = f(x, u), (2)

with the dynamics in the vicinity of an operating point described by the linearized system

f(x0, u0) = 0, (3)

N0
𝑑∆x
𝑑𝑡 = Ã∆x + B̃∆u, (4)

with
Ã = ∂f

∂x ∣
0

and B̃ = ∂f
∂u ∣

0
. (5)

The N matrix on the left-hand side of (2) and (4) is invertible – but it is retained explicitly on the
left-hand side in order to allow proper partitioning and elimination of unused degrees-of-freedom from
the model, should this be necessary.2 Let us assume that this has been done. The eigenmodes of the
system are the solutions to the eigenvalue problem

(𝑖𝜔N0 − Ã)φφφ = 0 (6)

or equivalently
(𝑖𝜔I − N−1

0 Ã)φφφ = 0. (7)

Each eigenmode – say, the 𝑘th – consists of a shape vector (eigenvector) φφφ𝑘 and corresponding root
(eigenvalue) 𝜆𝑘. The unforced eigenmode evolves dynamically according to

x𝑘 = φφφ𝑘 exp(𝜆𝑘𝑡). (8)

The shape and root may be real or complex. The eigenmode either decays exponentially, if ℜ{𝜆𝑘} < 0,
or grows exponentially, if ℜ{𝜆𝑘} > 0. The imaginary part ℑ{𝜆𝑘} contains the natural frequency, if
the mode is oscillatory. In this case, where ℑ{𝜆𝑘} ≠ 0, the root occurs in complex conjugate pairs,
(φφφ𝑘, 𝜆𝑘) and (φφφ∗

𝑘, 𝜆∗
𝑘). The scaling of the eigenmode shapes is arbitrary, and it is most convenient if

they are all scaled to unit magnitude, that is, |φφφ𝑘| = 1.
The present wind turbine model is constructed such that there are no repeated eigenvalues, and

no zero eigenvalues (pure integrators, rigid-body motion).
Laying the eigenmode shapes φφφ together, with each shape occupying a column, forms the square

matrix ΦΦΦ. This is invertible: let the inverse be ΨΨΨ = ΦΦΦ−1. Let A = N−1
0 Ã and B = N−1

0 B̃. Then the
state equations take the standard form

𝑑∆x
𝑑𝑡 = A∆x + B∆u. (9)

The matrices ΦΦΦ and ΨΨΨ diagonalize the A matrix; making the substitution ∆x = ΦΦΦ∆ξξξ, where ∆ξξξ are
modal amplitudes, and premultiplying by ΨΨΨ, (9) becomes

𝑑∆ξξξ
𝑑𝑡 = ΨΨΨAΦΦΦ∆ξξξ +ΨΨΨB∆u = A𝜆 ∆ξξξ +ΨΨΨB∆u. (10)

Here A𝜆 is a diagonal matrix, which, if the eigenmode shapes are of unit length, contains the ei-
genvalues λλλ along its diagonal. Note the implication: in the absence of external inputs, each of the

2The response obtained by partitioning and reducing N 𝑑x/𝑑𝑡 = f is not the same as that obtained by striking the
corresponding rows from 𝑑x/𝑑𝑡 = N−1f; and it is the former result that is desired. See Merz (2019a) Section 2.7.

PROJECT
TotalControl

REPORT NUMBER
D3.3

VERSION
1.0 12 of 81



TotalControl – Project no. 727680

eigenmodes evolves independently of all the others. The eigenmodes are, however, linked by way of
the input term ΨΨΨB∆u.

The states in (9) or (10) represent a variety of physical quantities and may be scaled differently. A
glance at one of the normalized (unit-length) mode shapes φφφ𝑘 does not reveal which states are actually
active, since a dominant state may, depending on the relative scaling, appear as a small quantity ≪ 1,
and a benign state appear as a quantity close to 1. Modal participation factors provide the desired
insight, correcting for the scaling and providing a metric that indicates the degree to which each state
participates in each mode. The matrix of participation factors is computed as

ΠΠΠ = ΨΨΨ𝑇 ∘ΦΦΦ, (11)

where the “∘” symbol indicates elementwise multiplication (Hadamard product). The matrix of parti-
cipation factors has the property that the sum along each of its rows and columns is 1. Each column
corresponds to a given eigenmode, and indicates the relative participation of each state in that ei-
genmode. Each row, then, corresponds to the relative participation of a given state across all the
eigenmodes.

Transfer functions in the frequency domain are both a convenient way to visualize the system
dynamics, and a prelude to spectral analysis of the response under stochastic loading. The matrix of
transfer functions between the inputs and states is

∂ξξξ
∂u = (𝑖𝜔I − A𝜆)−1

ΨΨΨB. (12)

For a particular input 𝑗 and state 𝑘, this reduces to

∂ξξξ𝑘
∂u𝑗

= 1
𝑖𝜔 − 𝜆𝑘

ψψψ𝑘b𝑗, (13)

where b𝑗 is the column of the B matrix corresponding to the 𝑗th input. If an output equation is
defined as

y = Cx = CΦΦΦ∆ξξξ, (14)

then the transfer function from the 𝑗th input to 𝑚th output is

∂𝑦𝑚
∂𝑢𝑗

= ∑
𝑘

1
𝑖𝜔 − 𝜆𝑘

(c𝑚φφφ𝑘)(ψψψ𝑘b𝑗). (15)

Note that if 𝑦𝑚 is defined to be a sensor output, and 𝑢𝑗 is a control input, then ψψψ𝑘b𝑗 indicates the
controllability of the 𝑘th eigenmode, and c𝑚φφφ𝑘 the observability. Defining

𝐻𝑘(𝜔) = 1
𝑖𝜔 − 𝜆𝑘

(c𝑚φφφ𝑘)(ψψψ𝑘b𝑗), (16)

the contribution of an individual eigenmode to a given input-output transfer function, as a function
of frequency, can be visualized by projecting the eigenmode’s transfer function 𝐻𝑘 into the direction
of the total transfer function 𝐻:

𝒫𝑘(𝜔) = ℜ {𝐻∗
𝑘(𝜔) 𝐻(𝜔)
|𝐻(𝜔)|2 } . (17)

In general, the matrix A𝜆 is complex, as is ΨΨΨ, and sometimes it is convenient to convert these to
real matrices. This can be done by applying the transform (Stevens and Lewis 2003)

∆ξξξ = Y∆z, Y = 1
2 [1 𝑖

1 −𝑖] , Y−1 = [ 1 1
−𝑖 𝑖] (18)
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to each pair of complex conjugate eigenmodes; Y is the identity matrix for real, first-order eigenmodes.
The Y transform converts each pair of complex conjugate eigenmodes to a pair of real modes, at the
cost that the real modes are then coupled.

Letting Y now represent the assembly of transforms (18) spanning all of the states, the transformed
state equations

𝑑∆z
𝑑𝑡 = Y−1A𝜆Y∆z + Y−1ΨΨΨB∆u = Ã𝜆∆z + B𝜆∆u (19)

are purely real. The Ã𝜆 matrix is no longer diagonal, since there are off-diagonal terms associated
with the coupling of the complex-conjugate eigenmodes by the transform (19). Let us now define what
we mean by a “mode”, and differentiate this from an “eigenmode”:

• Each pair of complex-conjugate, oscillatory eigenmodes is considered to be one second-order
oscillatory mode. This definition applies both to the complex-conjugate form (8), provided that
the pair of eigenmodes is considered together and operated upon simultaneously; or to the real
form, coupled through the transform (19).

• Each purely-real eigenmode is considered to be one first-order mode; that is, for real eigenvalues,
“mode” and “eigenmode” are synonymous.

Therefore, if there are 𝑁𝑟 real eigenvalues and 𝑁𝑐 complex eigenvalues, there are 𝑁𝑟 first-order modes
and 𝑁𝑐/2 oscillatory modes. When we speak of, say, the “first tower resonant mode”, what is meant
is the pair of eigenmodes that together form the resonant response.

2.1.1 Fundamental principles of acƟve load control

Each oscillatory mode (13) behaves dynamically as a single-degree-of-freedom oscillator. If we wish
to understand the fundamentals of active load control, then it is sufficient to examine a single mass-
spring-damper system as an archetype – at least, for systems whose linearized form provides a useful
description of the local system dynamics. Starting with the equation of motion

𝑑
𝑑𝑡 [𝑥

̇𝑥] = [ 0 1
−𝜔2

𝑛 −2𝜁𝜔𝑛
] [𝑥

̇𝑥] + [0
1] ̃𝐹 , (20)

where ̃𝐹 = 𝐹/𝑚, the input-to-state transfer function is

∂
∂ ̃𝐹

[𝑥
̇𝑥] = 1

𝜔2𝑛 − 𝜔2 + 𝑖2𝜁𝜔𝑛𝜔 [ 1
𝑖𝜔] . (21)

This transfer function has three regimes:

1. stiffness-dominated, at low frequency 𝜔 ≪ 𝜔𝑛;

2. resonant, when 𝜔 ≈ 𝜔𝑛; and,

3. mass-dominated, at high frequency 𝜔 ≫ 𝜔𝑛.

In the stiffness-dominated regime,
∂𝑥
∂ ̃𝐹

≈ 1
𝜔2𝑛

, (22)

so at low frequency the displacement is in-phase with the applied force. An energy budget would show
the power from the applied force being stored as potential energy in the spring, and then returned, in
equal quantity, to the applied force. In the mass-dominated regime,

∂𝑥
∂ ̃𝐹

≈ − 1
𝜔2 , (23)
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so at high frequency the applied force is in-phase with, but opposing, the displacement. An energy
budget would show the (small amount of) power being transferred from the applied force to the
kinetic energy of the mass, and then returned in equal quantity to the applied force. At the resonant
frequency,

∂𝑥
∂ ̃𝐹

≈ −𝑖 1
2𝜁𝜔2𝑛

, (24)

and the displacement lags the applied force by 90∘; the applied force is in-phase with the velocity.
There is therefore net dissipation of energy. An energy budget would show a large amount of power
sloshing between the kinetic energy of the mass and potential energy of the spring, and the force-times-
velocity power of the applied force balancing the damping-force-times-velocity power of the dissipative
elements.

With the above system dynamics in mind, we now define three types of active load control: load
reduction, load rejection, and active damping. Load reduction is a strategy where the steady-state op-
erating strategy of the system is altered in order to reduce the steady-state loads, displacements, and
stresses. Load rejection involves active use of the actuators to reduce the severity of load fluctuations
away from the resonant frequency, in either the stiffness-dominated or (rarely) the mass-dominated
regimes. Load rejection involves producing a control signal that is in-phase with the modal displace-
ments and applied forces – opposing them, in the stiffness-dominated regime, or augmenting them, in
the mass-dominated regime. The purpose of load rejection is not to dissipate the energy; rather, it
can be thought of as providing a parallel pathway for storing and returning energy, either stiffening
the system, or increasing its inertia. Finally, active damping makes use of a control action opposing
the velocity of motion, in the vicinity of the resonant frequency, in order to dissipate additional energy
from the resonant oscillations.

It remains to connect the single degree-of-freedom system (20) with the more general case of an
oscillatory mode. The eigenvalues of (20) are

𝜆 = { −𝜁𝜔𝑛 + 𝑖𝜔𝑛√1 − 𝜁2

−𝜁𝜔𝑛 − 𝑖𝜔𝑛√1 − 𝜁2 (25)

with
|𝜆| = 𝜔𝑛 and 𝜆 − 𝜆∗ = 𝑖2𝜔𝑛√1 − 𝜁2. (26)

One of the possible solutions for the eigenvectors is

Φ̃ΦΦ = 1
√1 + |𝜆|2

[1 1
𝜆 𝜆∗] , (27)

which has an inverse
Ψ̃ΨΨ = √1 + |𝜆|2

𝜆 − 𝜆∗ [−𝜆∗ 1
𝜆 −1] . (28)

With x = Φ̃ΦΦξξξ, the input-to-state transfer functions for the eigenmodes are, from (13),

∂𝜉𝑘
∂ ̃𝐹

= 1
𝑖𝜔 − 𝜆𝑘

ψ̃ψψ𝑘b̃ = ± 1
𝑖𝜔 − 𝜆𝑘

(√1 + |𝜆|2
𝜆 − 𝜆∗ ) , (29)

where in the latter expression we have used the fact that b̃ = [0, 1]𝑇 .
If we extract a pair of eigenmodes from a complex system, together forming one oscillatory mode,

then the equation of motion for these modes, subject to some input 𝑢, is

𝑑∆ξξξ
𝑑𝑡 = [𝜆 0

0 𝜆∗]∆ξξξ + [ ψψψ
ψψψ∗] b∆𝑢. (30)
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Here the ψψψ vector and b vector represent the full system, and may have many entries. As it was possible
to obtain an equation of this form from (20), it is also possible to reverse the process. Defining

𝜔𝑛 = |𝜆| and 𝜁 = −ℜ{𝜆}
𝜔𝑛

(31)

and using (27) and (28), an equation of precisely the form (20) is obtained, as

𝑑∆z
𝑑𝑡 = Φ̃ΦΦ [𝜆 0

0 𝜆∗] Ψ̃ΨΨ∆z + Φ̃ΦΦ [ ψψψ
ψψψ∗] b∆𝑢 = [ 0 1

−𝜔2
𝑛 −2𝜁𝜔𝑛

]∆z + Φ̃ΦΦ [ ψψψ
ψψψ∗] b∆𝑢. (32)

This equation is real, and represents an alternative version of the transform (18). With z = [𝑧, ̇𝑧], the
“position” 𝑧 and “velocity” ̇𝑧 are orthogonal in phase. However, they are not uniquely defined, since
the mapping back to physical variables,

∆x = [φφφ φφφ∗] Ψ̃ΨΨ∆z, (33)

still depends on the arbitrary phase chosen for the system mode shapes ΦΦΦ and related modal displace-
ments ∆ξξξ.

2.1.2 A concise derivaƟon of the state equaƟons for structural dynamics

The equations describing the structural dynamics of a wind turbine can be written

M(q) 𝑑2q
𝑑𝑡2 = R(q, q̇) + Q(q) F(q, q̇, x𝑛, u). (34)

The degrees-of-freedom associated with (34) are denoted q. These consist of nodal displacements and
rotations. On each body, one node is designated as the reference node, and the six degrees-of-freedom
associated with this node specify the global position and orientation (rotation) of the body. The
remaining degrees-of-freedom specify the position and orientation, with respect to the reference node,
of the other nodes on each body. These are given in the body’s reference coordinate system. The
details are described in Merz (2018) and need not be elaborated here; the key point is that the q
vector consists of a mixture of multiple types of degrees-of-freedom, referring to different coordinate
frames, and is therefore handled as a set of generalized coordinates. Nonetheless, the elements of q
are lengths or angles, and the units of (34) are those of forces and moments.3

The left-hand side of (34) consists of the inertia matrix M multiplying the accelerations 𝑑2q/𝑑𝑡2.
On the right-hand side of (34) are two vectors of forces: R, which contains internal forces, and QF,
containing external forces. The internal forces can be expanded as

R = −G(q, q̇) + H(q, q̇) − D(q, q̇) − K(q), (35)

respectively the gyroscopic, centrifugal, dissipative (damping), and stiffness forces. The external forces
QF may be functions of the non-structural states in the system x𝑛 that influence the structural forces,
and system inputs u. Also, the structural displacements and velocities may feed back as external forces;
for instance, the aerodynamic forces on the wind turbine blades depend on the deformed position and
motion of the blades.

3In the discussion that follows, we shall use the terms “displacements” and “forces” generically, including both linear
and rotational quantities.
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2.1.3 Gravity loads

The gravitational forces on each body act as if the body were made to accelerate uniformly in the
direction opposite the gravitational vector. This effect is achieved by applying the gravitational
acceleration to each body’s reference node; let this give a constant vector g of nodal accelerations.
Then,

R𝑔 = M(q) g (36)
can be considered as a component of the right-hand side forces in (34). The structure of the mass
matrix ensures that the acceleration of the reference node results in the appropriate forces on the
other nodes in the body.

2.1.4 Constraints and modal transformaƟon

The structural equations are constrained and reduced through three transformations of the degrees-
of-freedom:

• the bodies in the structure (foundation, tower, nacelle, driveshaft, and blades) are linked together
at fixed or rotary joints, and redundant degrees-of-freedom are eliminated;

• the nodal degrees-of-freedom are constrained to follow certain mode shapes that are computed
for the structural bodies, and only a subset of these mode shapes is retained;

• dependence of the terms in (34) on the azimuth angle of the rotor is eliminated by a multi-blade
coordinate transform.

The first of these transformations can be written as

C(q̂, q𝑠) = 0, with solution q = [ q̂
q𝑠(q̂)] , (37)

where C is a set of nonlinear constraint equations, q̂ are the retained degrees-of-freedom, and q𝑠 are
the redundant (slave) degrees-of-freedom. The body-mode reduction is accomplished by the linear
transformation

q̂ = ΦΦΦηηη, (38)
where ΦΦΦ is a constant matrix that is computed upfront. The transformation to multi-blade coordinates
is written

ηηη = T𝐵
𝜓 (Ψ)ηηη𝜓, (39)

where Ψ is the rotor azimuth angle. We have, at this point, not specified what the transformations
are; but (37) through (39) fix the terminology of the transformed degrees-of-freedom. For reasons that
will become apparent, we will postpone the discussion of the multi-blade coordinate transform until
Section 2.1.7.

Now, (34) can be written in state-space form as

[I 0
0 M] 𝑑

𝑑𝑡 [q
q̇] = [ q̇

R + QF] . (40)

We want to write (40) in terms of the states (ηηη, ̇ηηη), followed by a transformation of the equations
(forces) to the same basis. Towards this end, we shall establish a sequence of two transforms

T𝑞
𝜂 = T𝑞

̂𝑞T ̂𝑞
𝜂 (41)

that are applied to the structural state equations as

[I 0
0 M] T𝑞

𝜂
𝑑
𝑑𝑡 [ηηη

̇ηηη] = [ q̇
R + QF] . (42)
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We begin with T𝑞
̂𝑞. The variation of (37) gives

∂C
∂q 𝛿q = 0. (43)

Defining L = ∂C/∂q and partitioning (43), we can write

L̂ 𝛿q̂ + L𝑠𝛿q𝑠 = 0, (44)

or
𝛿q = ΛΛΛ 𝛿q̂, ΛΛΛ = [ I

−L𝑠L̂] . (45)

As the constraint equations have no direct time dependence, it follows that their time derivative leads
to

𝑑q
𝑑𝑡 = ΛΛΛ(q) 𝑑q̂

𝑑𝑡 . (46)

Furthermore,
𝑑2q
𝑑𝑡2 = ΛΛΛ

𝑑2q̂
𝑑𝑡2 + ∂ΛΛΛ

∂𝑞𝑘

𝑑q̂
𝑑𝑡

𝑑𝑞𝑘
𝑑𝑡 = ΛΛΛ

𝑑2q̂
𝑑𝑡2 + ∂ΛΛΛ

∂𝑞𝑘

𝑑q̂
𝑑𝑡ΛΛΛ𝑘

𝑑q̂
𝑑𝑡 (47)

and we can write compactly
𝑑2q
𝑑𝑡2 = ΛΛΛ

𝑑2q̂
𝑑𝑡2 + ΓΓΓ

𝑑q̂
𝑑𝑡 . (48)

It follows that
T𝑞

̂𝑞 = [ ΛΛΛ(q̂) 0
ΓΓΓ(q̂, ̇q̂) ΛΛΛ(q̂)] . (49)

The body-mode transformation (38) gives simply

𝑑q̂
𝑑𝑡 = ΦΦΦ

𝑑ηηη
𝑑𝑡 and 𝑑2q̂

𝑑𝑡2 = ΦΦΦ
𝑑2ηηη
𝑑𝑡2 , (50)

leading to

T ̂𝑞
𝜂 = [ΦΦΦ 0

0 ΦΦΦ
] . (51)

Combining the constraints and body-mode transformation, the state equations (40) become

[I 0
0 M] [ΛΛΛ 0

ΓΓΓ ΛΛΛ
] [ΦΦΦ 0

0 ΦΦΦ
] 𝑑

𝑑𝑡 [ηηη
̇ηηη] = [ ΛΛΛΦΦΦ ̇ηηη

R + QF] . (52)

There are more equations than unknowns in (52), and therefore some of the equations must be elim-
inated.4

2.1.5 Virtual work and reducƟon of the state equaƟons

The lower partition of the state equations (52), the momentum balance equation, has units of force.
The definition of a force is a quantity that does an incremental work when subjected to an incremental
displacement. The total work done by a vector of nodal forces during an incremental displacement is

𝛿𝑊 = (𝛿x𝑔
/𝑔)𝑇 F𝑔. (53)

4For our ultimate purposes of linearization and modal analysis, a minimal-state model is preferred over a Lagrange
multiplier approach.
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Then,
∂𝑊
∂q =

∂(x𝑔
/𝑔)𝑇

∂q T𝑔
𝐵F𝐵. (54)

Defining

Q =
∂(x𝑔

/𝑔)𝑇

∂q T𝑔
𝐵, (55)

a detailed expression for which is given in Merz (2018), the (generalized) force applied to the equations
of motion is QF𝐵, or just QF for the time being. Note that the leading term in Q is a derivative of a
physical displacement, relative to the global coordinate system, with respect to the degrees-of-freedom.
From this it can be discerned that forces transform, with respect to the degrees-of-freedom, like the
transpose of a velocity. This can be seen by writing

v𝑔
/𝑔 =

𝑑x𝑔
/𝑔

𝑑𝑡 =
∂x𝑔

/𝑔
∂q

𝑑q
𝑑𝑡 , (56)

where the same partial derivative ∂x𝑔
/𝑔/∂q as in (55) appears. To be explicit, if we have a change of

basis (52),
q = h0(ηηη), 𝑑q

𝑑𝑡 = ΛΛΛΦΦΦ
𝑑ηηη
𝑑𝑡 ,

then a force vector will transform, through the same change of basis, as

F𝜂 = ΦΦΦ𝑇ΛΛΛ𝑇 QF.

The state equation (52) can then be reduced to

[I 0
0 ΦΦΦ𝑇 ] [I 0

0 ΛΛΛ𝑇 ] [I 0
0 M] [I 0

ΓΓΓ ΛΛΛ
] [I 0

0 ΦΦΦ
] 𝑑

𝑑𝑡 [ηηη
̇ηηη] = [I 0

0 ΦΦΦ𝑇 ] [I 0
0 ΛΛΛ𝑇 ] [ ̇ηηη

R + QF] , (57)

where we have implicitly applied the operation (ΛΛΛΦΦΦ)−1 to the upper half. The extra degrees-of-freedom
are eliminated, constraining the equations and converting to a basis of body modes.5 For short, we
write

(T̃𝑞
𝜂)𝑇 [I 0

0 M] T𝑞
𝜂

𝑑
𝑑𝑡 [ηηη

̇ηηη] = (T̃𝑞
𝜂)𝑇 [ ΛΛΛΦΦΦ ̇ηηη

R + QF] , (T̃𝑞
𝜂)𝑇 = [(ΛΛΛΦΦΦ)−1 0

0 (ΛΛΛΦΦΦ)𝑇 ] . (58)

2.1.6 Modal damping

In STAS it is allowed – recommended, in fact – to apply structural damping not through the dissip-
ative nodal force D in (35), but rather as a modal damping ratio. This approach avoids frequency
dependence of the damping ratio, which is consistent with experimental data (Blevins 1990). Modal
damping is implemented as a diagonal matrix, containing the damping factor

𝐶𝜆 = 2𝜁√𝑀𝜆𝐾𝜆 (59)

for each mode (Merz 2018). A damping force vector, in the modal 𝜂 basis, is computed as

D𝜆 = C𝜆 ̇ηηη. (60)

This is appended to (58), like

(T̃𝑞
𝜂)𝑇 [I 0

0 M] T𝑞
𝜂

𝑑
𝑑𝑡 [ηηη

̇ηηη] = (T̃𝑞
𝜂)𝑇 [ q̇

R + QF] − [ 0
D𝜆

] . (61)
5It would seem that premultiplying (52) by (T𝑞

𝜂)𝑇 would give a more consistent transformation. This was attempted
initially, however it was observed that the resulting upper-half equations admitted incorrect steady-state solutions with
nonzero rates-of-change η̇ηη. Also, we can’t multiply by (T𝑞

𝜂)−1, because although this would result in a valid set of state
equations, the momentum equations would not be in the correct basis for computing power flows (Section 2.1.9).
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2.1.7 MulƟ-blade coordinates and Įnal form of the state equaƟons

The states x in (2) – not only the structural states ηηη and ̇ηηη in (57), but also the other states like
angles-of-attack and blade pitch commands that are associated with each blade – are transformed
to multi-blade coordinates.6 When it comes to the structural portion of the model, expressing the
state equations in multi-blade coordinates eliminates the dependence on the rotor azimuth angle of
the inertia matrix M, the internal forces R, and, ideally, the applied forces QF . The equations
then become, for practical purposes, time-invariant. Time invariance means that the equations can be
solved for steady-state operating points that include the spinning rotor, and linearized with constant
A and B matrices. Working in multi-blade coordinates leads to some subtleties in how the equations
need to be manipulated, especially when it comes to power flow analysis (Section 2.1.9).

The multi-blade coordinate transform is

T𝐵
𝜓 = ⎡⎢

⎣

1 cosΨ1 sinΨ1
1 cosΨ2 sinΨ2
1 cosΨ3 sinΨ3

⎤⎥
⎦

and T𝜓
𝐵 = (T𝐵

𝜓 )−1 = 1
3

⎡⎢
⎣

1 1 1
2 cosΨ1 2 cosΨ2 2 cosΨ3
2 sinΨ1 2 sinΨ2 2 sinΨ3

⎤⎥
⎦

, (62)

such that

z𝐵 = T𝜓
𝐵z𝜓 and z𝜓 = T𝐵

𝜓 z𝐵, with z = ⎡⎢
⎣

𝑧1
𝑧2
𝑧3

⎤⎥
⎦

(63)

and 𝑧1, 𝑧2, and 𝑧3 are triplets of some quantity 𝑧 associated with blades 1, 2, and 3. Where a vector
like ηηη includes quantities associated with both the blades and other parts of the system, we can still
write

ηηη𝜓 = T𝜓
𝐵ηηη𝐵,

filling in the identity matrix for those parts of T𝜓
𝐵 not associated with the blades.

A question now arises: Since we are applying the multi-blade coordinate transform to a system
model that includes complex interconnections between variables, how do we extend the transforma-
tion to include the whole set of variables? It may not be obvious which variables are derivatives of
others. The answer is that it is not necessary to take multiple time derivatives; we can implement a
straightforward version of the multi-blade coordinate transform to the state variables,

x𝐵 = T𝐵
𝜓 x𝜓, (64)

that does not consider higher time derivatives. For justification, consider the generic nonlinear trans-
formation

y = G(z) z. (65)
The first time derivative is

𝑑y
𝑑𝑡 = (G𝑗 + ∂G

∂𝑧𝑗
z) 𝑑𝑧𝑗

𝑑𝑡 , (66)

the second time derivative is

𝑑2y
𝑑𝑡2 = (G𝑗 + ∂G

∂𝑧𝑗
z) 𝑑2𝑧𝑗

𝑑𝑡2 + (∂G𝑗
∂𝑧𝑘

+ ∂G𝑘
∂𝑧𝑗

+ ∂2G
∂𝑧𝑗∂𝑧𝑘

z) 𝑑𝑧𝑗
𝑑𝑡

𝑑𝑧𝑘
𝑑𝑡 , (67)

and so on. As an alternative, define the variables ̇z′ and ̈z′ such that

𝑑y
𝑑𝑡 = G ̇z′ and 𝑑2y

𝑑𝑡2 = G ̈z′. (68)

Note the difference between the two bases (z, ̇z, ̈z) and (z, ̇z′, ̈z′): In the former case, ̇z is the rate-of-
change of z, while in the latter case, ẏ is the transformation through G of ̇z′, and so forth for higher

6See Merz (2015c), Bir (2008), and Johnson (1994).

PROJECT
TotalControl

REPORT NUMBER
D3.3

VERSION
1.0 20 of 81



TotalControl – Project no. 727680

time derivatives. Either case leads to a valid state space representation. The “catch” is that in the
latter case

̇z′ ≠ 𝑑z
𝑑𝑡 .

Applying the transformation (64) to (2),

(T𝑥
𝑥,𝜓)𝑇 NT𝑥

𝑥,𝜓
𝑑x𝜓

𝑑𝑡 = (T𝑥
𝑥,𝜓)𝑇 f (69)

or
(T𝑥

𝑥,𝜓)𝑇 NT𝑥
𝑥,𝜓

𝑑x𝜓

𝑑𝑡 = (T𝑥
𝑥,𝜓)𝑇 T𝐵

𝜓 f𝜓 (70)

with
T𝑥

𝑥,𝜓 = T𝐵
𝜓 +

𝑑T𝐵
𝜓

𝑑Ψ x𝜓 δδδ𝑇
Ω. (71)

Here δδδ𝑇
Ω is a row vector, with a value of 1 in the entry corresponding to the state Ω. That is, the

latter term appears as a vector that adds to the column of T𝐵
𝜓 corresponding to the rotor speed in

𝑑x𝜓/𝑑𝑡.

2.1.8 LinearizaƟon of the state equaƟons

The task at hand is to linearize (69), obtaining system state matrices A𝜓 and B𝜓. A key observation
is that the equations

N𝑑x
𝑑𝑡 = f, or NT𝑥

𝑧
𝑑z
𝑑𝑡 = f, (72)

prior to a generic x → z transformation, are satisfied. When any transform is applied to both sides
of (72), such as

(T𝑥
𝑧 )𝑇 NT𝑥

𝑧
𝑑z
𝑑𝑡 = (T𝑥

𝑧 )𝑇 f, (73)

and a linearization is performed, the terms

∂(T𝑥
𝑧 )𝑇

∂z ∣
0

(N0(T𝑥
𝑧 )0

𝑑z
𝑑𝑡 ∣

0
)∆z = ∂(T𝑥

𝑧 )𝑇

∂z ∣
0

f0∆z, (74)

balance, and can be eliminated from the equations. In other words, the transform of the linearized
equations is identical to the linearization of the transformed equations.

Linearization of the structural state equations (52) gives

[I 0
0 M0

] T𝑞
𝜂,0

𝑑
𝑑𝑡 [∆ηηη

∆ ̇ηηη] = ([ 0 I
A21 A22

] − [A𝑀 + A𝑇 A ̇𝑇 ]) T𝑞
𝜂,0 [∆ηηη

∆ ̇ηηη] + [ 0
Q0

]∆F. (75)

with
A21 = ∂R

∂q ∣
0

+ ∂Q
∂q ∣

0
F0, (76)

A22 = ∂R
∂q̇ ∣

0
, (77)

A𝑀 = [0 0
0 ∂M0/∂q] T𝑞

𝜂,0
𝑑
𝑑𝑡 [ηηη

̇ηηη]
0

(78)

A𝑇 = [I 0
0 M0

] ∂T𝑞
𝜂

∂q ∣
0

𝑑
𝑑𝑡 [ηηη

̇ηηη]
0

(79)

PROJECT
TotalControl

REPORT NUMBER
D3.3

VERSION
1.0 21 of 81



TotalControl – Project no. 727680

and
A ̇𝑇 = [I 0

0 M0
] ∂T𝑞

𝜂
∂q̇ ∣

0

𝑑
𝑑𝑡 [ηηη

̇ηηη]
0

. (80)

We now consider the linearization of the multi-blade coordinate transformed state equations (69).
This gives a mean equation

(T𝑥
𝑥,𝜓)𝑇

0 N0(T𝑥
𝑥,𝜓)0

𝑑x𝜓

𝑑𝑡 ∣
0

= (T𝑥
𝑥,𝜓)𝑇

0 f0 (81)

and perturbed equation

(T𝑥
𝑥,𝜓)𝑇

0 N0(T𝑥
𝑥,𝜓)0

𝑑∆x𝜓

𝑑𝑡 =

(T𝑥
𝑥,𝜓)𝑇

0 ( ∂f
∂x𝜓 ∣

0
− N0

∂T𝑥
𝑥,𝜓

∂x𝜓 ∣
0

𝑑x𝜓

𝑑𝑡 ∣
0

− ∂N
∂x𝜓 ∣

0
(T𝑥

𝑥,𝜓)0
𝑑x𝜓

𝑑𝑡 ∣
0
)∆x𝜓

+ (T𝑥
𝑥,𝜓)𝑇

0
∂f

∂u𝜓 ∣
0
∆u𝜓. (82)

Noting that
∆x = T𝑥

𝑥,𝜓 ∆x𝜓, or ∂x
∂x𝜓 = T𝑥

𝑥,𝜓, (83)

and similarly for u, it is convenient to write the perturbed equation (82) as

(T𝑥
𝑥,𝜓)𝑇

0 N0(T𝑥
𝑥,𝜓)0

𝑑∆x𝜓

𝑑𝑡 =

(T𝑥
𝑥,𝜓)𝑇

0 ( ∂f
∂x ∣

0
− ∂N

∂x ∣
0

𝑑x
𝑑𝑡 ∣

0
) (T𝑥

𝑥,𝜓)0∆x𝜓 − (T𝑥
𝑥,𝜓)𝑇

0 N0
∂T𝑥

𝑥,𝜓
∂x𝜓 ∣

0

𝑑x𝜓

𝑑𝑡 ∣
0
∆x𝜓

+ (T𝑥
𝑥,𝜓)𝑇

0
∂f
∂u ∣

0
(T𝑢

𝑢,𝜓)0∆u𝜓. (84)

It can be recognized that

(T𝑥
𝑥,𝜓)𝑇

0 N0(T𝑥
𝑥,𝜓)0

𝑑∆x𝜓

𝑑𝑡 =

(T𝑥
𝑥,𝜓)𝑇

0 A(T𝑥
𝑥,𝜓)0∆x𝜓 − (T𝑥

𝑥,𝜓)𝑇
0 N0

∂T𝑥
𝑥,𝜓

∂x𝜓 ∣
0

𝑑x𝜓

𝑑𝑡 ∣
0
∆x𝜓 + (T𝑥

𝑥,𝜓)𝑇
0 B(T𝑢

𝑢,𝜓)0∆u𝜓, (85)

where A and B come from linearizations of the equations prior to performing the multi-blade coordin-
ate transformation. The N matrix term on the right-hand-side of (85) includes

∂T𝑥
𝑥,𝜓

∂x𝜓 ∣
0

𝑑x𝜓

𝑑𝑡 ∣
0
∆x𝜓 = Ω0

𝑑T𝐵
𝜓

𝑑Ψ ∣
0
∆x𝜓 + (

𝑑T𝐵
𝜓

𝑑Ψ ∣
0

𝑑x𝜓

𝑑𝑡 ∣
0

+ Ω0
𝑑2T𝐵

𝜓
𝑑Ψ2 ∣

0
x𝜓

0 )∆Ψ. (86)

To be concise we can write (85) as

N𝜓 𝑑∆x𝜓

𝑑𝑡 = A𝜓∆x𝜓 + B𝜓∆u𝜓. (87)
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2.1.9 Power Ňow

In studying mode shapes, and the overall response, it is of interest to know how power flows through
the system. Power is rate of change of energy; (generalized) force times (generalized) velocity; torque
times angular velocity; or voltage times current.

We are generally interested in power-flow analysis in order to explain features of the modal dy-
namics, like modes with marginal stability.7 As such we can isolate a single mode of interest, and
observe the system as it oscillates or decays in this mode.

The mechanics of the calculation are simple; but there are subtleties in how the power flows should
be interpreted. To fix ideas, let us consider the linear single-degree-of-freedom oscillator (20), written
in the form

[1 0
0 𝑚] 𝑑

𝑑𝑡 [𝑥
̇𝑥] = [ 0 1

−𝑘 −𝑐] [𝑥
̇𝑥] + [0

1] 𝐹 , (88)

along with eigenvalues (25) and mode shapes (27). Power is obtained by multiplying the momentum
equation, whose terms have units of force, by the velocity:

̇𝑥𝑚𝑑 ̇𝑥
𝑑𝑡 = − ̇𝑥𝑘𝑥 − ̇𝑥𝑐 ̇𝑥 + ̇𝑥𝐹 . (89)

Under harmonic forcing,

𝐹 = ̂𝐹 exp(𝑖𝜔𝑡) + ̂𝐹 ∗ exp(−𝑖𝜔𝑡), 𝑥 = ̂𝑥 exp(𝑖𝜔𝑡) + ̂𝑥∗ exp(−𝑖𝜔𝑡), (90)

a generic velocity-force product like 𝑣𝐹 consists of terms like

𝑣𝐹 = ̂𝑣 ̂𝐹 exp(𝑖2𝜔𝑡) + ̂𝑣∗ ̂𝐹 ∗ exp(−𝑖2𝜔𝑡) + ̂𝑣 ̂𝐹 ∗ + ̂𝑣∗ ̂𝐹 . (91)

Integrating over a cycle, the oscillating terms disappear; the mean power is given by

𝑣𝐹 = ̂𝑣 ̂𝐹 ∗ + ̂𝑣∗ ̂𝐹 . (92)

Only the component of velocity in-phase with 𝐹 contributes to the mean power. Thus intuitively we
should expect that under harmonic forcing the mean powers of the terms

̇𝑥𝑚𝑑 ̇𝑥
𝑑𝑡 and ̇𝑥𝑘𝑥

are zero, and the net power introduced by the harmonic force is dissipated in the damper.
Applying a modal transformation to (88) gives a solution in terms of the eigenmodes,

𝑑
𝑑𝑡 [ 𝜉

𝜉∗] = [𝜆 0
0 𝜆∗] [ 𝜉

𝜉∗] + Ψ̃ΨΨ [1 0
0 𝑚]

−1
[0
1] 𝐹 = [𝜆 0

0 𝜆∗] [ 𝜉
𝜉∗] + √1 + |𝜆|2

𝜆 − 𝜆∗ [ 1
−1] 𝑚−1𝐹, (93)

with

[𝜆 0
0 𝜆∗] = Ψ̃ΨΨ [1 0

0 𝑚]
−1

[ 0 1
−𝑘 −𝑐]Φ̃ΦΦ. (94)

What is interesting about (93) in the present context is that we no longer have an equation like
𝑑𝑥/𝑑𝑡 = ̇𝑥 making the velocity naturally orthogonal to the displacement. Rather, the unforced
dynamics

𝑑𝜉
𝑑𝑡 = 𝜆𝜉,

with the mode shape

φφφ = 1
√1 + |𝜆|2

[1
𝜆] ,

7Here we are talking about system modes computed for the entire wind turbine, not the body modes of (38).
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means that the velocities within the eigenmode are not orthogonal to the displacements, except in the
rare case where ℜ{𝜆} = 0 precisely.

Returning to the form (88), let us apply a modal transformation of the states, giving

[1 0
0 𝑚]Φ̃ΦΦ 𝑑

𝑑𝑡 [ 𝜉
𝜉∗] = [ 0 1

−𝑘 −𝑐]Φ̃ΦΦ [ 𝜉
𝜉∗] + [0

1] 𝐹 (95)

or
1

√1 + |𝜆|2
[ 1 1
𝑚𝜆 𝑚𝜆∗]

𝑑
𝑑𝑡 [ 𝜉

𝜉∗] = 1
√1 + |𝜆|2

[ 𝜆 𝜆∗

−𝑘 − 𝑐𝜆 −𝑘 − 𝑐𝜆∗] [ 𝜉
𝜉∗] + [0

1] 𝐹 . (96)

The velocity is

̇𝑥 = [φ𝑣 φ∗
𝑣] [ 𝜉

𝜉∗] = 1
√1 + |𝜆|2

[𝜆 𝜆∗] [ 𝜉
𝜉∗] , (97)

so the power-flow equation is, term-by-term,

[𝜉 𝜉∗] [φ𝑣
φ∗

𝑣
] 𝑚 [φ𝑣 φ∗

𝑣] 𝑑
𝑑𝑡 [ 𝜉

𝜉∗] = 𝑚
1 + |𝜆|2 [𝜉 𝜉∗] [ 𝜆2 𝜆𝜆∗

𝜆𝜆∗ (𝜆∗)2] 𝑑
𝑑𝑡 [ 𝜉

𝜉∗] , (98)

− [𝜉 𝜉∗] [φ𝑣
φ∗

𝑣
] 𝑘 [φ𝑑 φ∗

𝑑] [ 𝜉
𝜉∗] = − 𝑘

1 + |𝜆|2 [𝜉 𝜉∗] [ 𝜆 𝜆
𝜆∗ 𝜆∗] [ 𝜉

𝜉∗] , (99)

− [𝜉 𝜉∗] [φ𝑣
φ∗

𝑣
] 𝑐 [φ𝑣 φ∗

𝑣] [ 𝜉
𝜉∗] = − 𝑐

1 + |𝜆|2 [𝜉 𝜉∗] [ 𝜆2 𝜆𝜆∗

𝜆𝜆∗ (𝜆∗)2] [ 𝜉
𝜉∗] , (100)

and
[𝜉 𝜉∗] [φ𝑣

φ∗
𝑣
] [0

1] 𝐹 = 1
√1 + |𝜆|2

[𝜉 𝜉∗] [ 𝜆
𝜆∗] 𝐹 . (101)

The important thing to note here is that, under harmonic forcing, it appears as though the mass and
stiffness terms are delivering net power to the system. The power flows from the various terms balance,
and the correct net power is obtained; yet the presence of “extra” power in the equations complicates
the physical interpretation of the results, when we move to a more complex system.8

Due to these issues, we take the strategy of examining the power flows under free decay. That is,
we allow the selected mode to evolve according to

𝑑
𝑑𝑡 [ 𝜉

𝜉∗] = [𝜆 0
0 𝜆∗] [ 𝜉

𝜉∗] .

This does not make the powers delivered by the mass and stiffness terms disappear; quite the contrary,
it gives them an appropriate physical interpretation: net power flows from the kinetic and potential
energies into the dissipative elements.

Let us now turn to the state equations (70), with linearization (87). Say that we have an isolated
mode,

∆x𝜓 = [φφφ φφφ∗]∆ξξξ, ∆ξξξ = [ ∆𝜉
∆𝜉∗] = [

̂𝜉 exp 𝜆𝑡
̂𝜉∗ exp 𝜆∗𝑡] , (102)

where (φφφ,φφφ∗) are the relevant columns from the mode shape matrix ΦΦΦ; also let (ψψψ,ψψψ∗) be the corres-
ponding rows from the inverse mode shape matrix ΨΨΨ. The amplitude and phase of ̂𝜉 is arbitrary, and
can be chosen such that a convenient state or output variable is of unit magnitude and zero phase.
The equation of motion for free decay is

N𝜓 𝑑∆x𝜓

𝑑𝑡 = A𝜓∆x𝜓, (103)

8This caused the author quite some confusion during initial investigations, isolating a mode and looking at the power
term-by-term: why were selected springs and masses delivering a steady power to the system, under constant-amplitude
harmonic motion?
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or applying the modal transformation (102),

N𝜓 [φφφ φφφ∗] 𝑑∆ξξξ
𝑑𝑡 = A𝜓 [φφφ φφφ∗]∆ξξξ, (104)

such that
𝑑∆ξξξ
𝑑𝑡 = [ ψψψ

ψψψ∗] (N𝜓)−1A𝜓 [φφφ φφφ∗]∆ξξξ = [𝜆 0
0 𝜆∗] [ 𝜉

𝜉∗] . (105)

We can extract the rows of (104) corresponding to the structural dynamics. Let

φφφ = ⎡⎢
⎣

φφφ𝑑
φφφ𝑣
φφφ𝑠

⎤⎥
⎦

, (106)

where φφφ𝑑 is associated with the generalized displacements ∆ηηη𝜓, φφφ𝑣 the generalized velocities ∆ ̇ηηη𝜓, and
φφφ𝑠 the other system states. Then, the structural equations of motion take the form9

M𝜓 [𝜆φφφ𝑣 𝜆∗φφφ∗
𝑣] [ ∆𝜉

∆𝜉∗] = −K𝜓 [φφφ𝑑 φφφ∗
𝑑] [ ∆𝜉

∆𝜉∗] − 𝒟𝒟𝒟𝜓 [φφφ𝑣 φφφ∗
𝑣] [ ∆𝜉

∆𝜉∗] + A𝜓
𝑠 [φφφ𝑠 φφφ∗

𝑠] [ ∆𝜉
∆𝜉∗] . (107)

Multiplying by the generalized velocities gives the modal power equation

− [∆𝜉 ∆𝜉∗] [ φφφ𝑇
𝑣

(φφφ∗
𝑣)𝑇 ] M𝜓 [𝜆φφφ𝑣 𝜆∗φφφ∗

𝑣] [ ∆𝜉
∆𝜉∗] − [∆𝜉 ∆𝜉∗] [ φφφ𝑇

𝑣
(φφφ∗

𝑣)𝑇 ] K𝜓 [φφφ𝑑 φφφ∗
𝑑] [ ∆𝜉

∆𝜉∗]

− [∆𝜉 ∆𝜉∗] [ φφφ𝑇
𝑣

(φφφ∗
𝑣)𝑇 ]𝒟𝒟𝒟𝜓 [φφφ𝑣 φφφ∗

𝑣] [ ∆𝜉
∆𝜉∗] + [∆𝜉 ∆𝜉∗] [ φφφ𝑇

𝑣
(φφφ∗

𝑣)𝑇 ] A𝜓
𝑠 [φφφ𝑠 φφφ∗

𝑠] [ ∆𝜉
∆𝜉∗] = 0. (108)

With this sign convention, once the terms in (108) are expanded into their numerical values, a positive
number means “power is leaving the term”, and a negative number means “power is entering the
term.”

The dissipated power is of particular interest, as this shows which elements are providing modal
stability. If we draw a control surface around the wind turbine, it is primarily the aerodynamic forces
and generator torque that are responsible for the damping of structural modes (positive or negative!),
with soil, hydrodynamic, and structural damping providing a secondary contribution. To isolate these
effects requires that we reformulate (108), in the form of (34), with nodal displacements and forces as
a basis. Getting there is straightforward, since we have

[∆q
∆q̇] = T𝑞

𝜂∣0 T𝜂
𝑥,𝜓∣

0
[φφφ φφφ∗]∆ξξξ, (109)

and
𝑑
𝑑𝑡 [∆q

∆q̇] = (T𝑞
𝑥,𝜓∣

0
[𝜆φφφ 𝜆∗φφφ∗] +

∂T𝑞
𝑥,𝜓

∂x𝜓 ∣
0

𝑑x𝜓

𝑑𝑡 ∣
0

[φφφ φφφ∗])∆ξξξ. (110)

In the common case of linearization about an equilibrium point,

𝑑x𝜓

𝑑𝑡 ∣
0

= 0,

which simplifies (110).
9Please do not confuse the dissipative matrix 𝒟𝒟𝒟𝜓 with the D𝜓 matrix in the full state equations.
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2.1.10 Spectral analysis of stochasƟc loads

Random signals are often represented as spectra in the frequency domain, for purposes of engineering
calculations. It is assumed that the stochastic processes in question are stationary and Gaussian.10

With these assumptions, the joint probability distribution is a multivariate Gaussian, and its properties
are fully described by a mean value and a covariance. Since the systems under consideration are linear,
we can restrict the discussion to a pair of stochastic signals; the effects of additional signals can be
obtained by considering all permutations of pairs in turn.

Consider then a pair of signals 𝑠1(𝑡) and 𝑠2(𝑡), which may be the same (a signal and itself) or
different. It is not so important at first that the signals are Gaussian; what is important is that we
are looking to characterize the mean value of each signal, and the covariance between the signals as a
function of the time offset 𝜏 between two points. (Stationarity ensures us that the result will be the
same regardless of which two points are chosen.) The covariance is

𝑄12(𝜏) = 𝐸[(𝑠1(𝑡) − 𝑠1)(𝑠2(𝑡 + 𝜏) − 𝑠2)], (111)

where the expected value is taken over the time 𝑡. The spectrum is the Fourier transform, in 𝜏 , of the
covariance function,

𝑆12(𝑓) = ∫
∞

−∞
𝑄12(𝜏) exp(−𝑖2𝜋𝑓𝜏) 𝑑𝜏. (112)

In numerical calculations of stochastic processes like turbulence and ocean waves, we may be given
many realizations (or one long realization) of 𝑠1(𝑡) and 𝑠2(𝑡), in which case the spectrum can be
computed via (111) and (112). Alternatively, it may be possible to formulate an expression for 𝑄12(𝜏)
or 𝑆12(𝑓) theoretically. In the STAS program, the ocean wave force spectra are obtained by the former
approach, and the rotationally-sampled turbulence spectra by the latter (Merz 2015a).

In either case, the numerical implementation deals with discrete timesteps and discrete frequencies.
We illustrate the process that begins with realizations (time series) because this is the most general. Let
the signals represent the inputs u to a linear dynamic system, with mean value u0 and perturbations
∆u. These inputs are defined at 𝑁/2 timesteps 𝑝∆𝑡, with 𝑝 the set of integers 0 ≤ 𝑝 ≤ 𝑁/2 − 1.

We take the signal and mirror it in time, such that it is periodic over 𝑁 steps, −𝑁/2 ≤ 𝑝 ≤ 𝑁/2−1.
We then perform a Fourier transform, obtaining the coefficients υυυ on a representation of the signal of
the form

∆u =
𝑁/2−1
∑

𝑘=−𝑁/2
υυυ𝑘 exp(−𝑖2𝜋 𝑘𝑝/𝑁). (113)

In the exponential, we have employed the relationship

∆𝑓 = 1
𝑁∆𝑡 (114)

such that
exp(∓𝑖2𝜋 𝑘∆𝑓 𝑝∆𝑡) = exp(∓𝑖2𝜋 𝑘𝑝/𝑁). (115)

Since the time signal is real, υυυ−𝑘 = υυυ∗
𝑘.

The covariance matrix is

Q𝑢(𝑚∆𝜏) = 𝐸[∆𝑢(𝑝∆𝑡)∆𝑢(𝑝∆𝑡 + 𝑚∆𝜏)]. (116)
10A thorough treatment of the theory is out of the question, as it involves the mathematics of multivariable probability

and Fourier analysis, and its application contains many subtleties – for instance, why is it reasonable to approximate
non-stationary, non-Gaussian stochastic phenomena like atmospheric turbulence and ocean waves as stationary Gaussian
processes?
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Using (113), and the definition of expected value,

Q𝑢(𝑚∆𝜏) = 1
𝑁

𝑁/2−1
∑

𝑝=−𝑁/2

⎧{
⎨{⎩

⎛⎜
⎝

𝑁/2−1
∑

𝑗=−𝑁/2
υυυ𝑗 exp(−𝑖2𝜋 𝑗𝑝/𝑁)⎞⎟

⎠
⎛⎜
⎝

𝑁/2−1
∑

𝑘=−𝑁/2
υυυ𝑇

𝑘 exp(−𝑖2𝜋 𝑘(𝑝 + 𝑚)/𝑁)⎞⎟
⎠

⎫}
⎬}⎭

.

(117)
For a given 𝑗, when summed over 𝑝, the product in braces is zero except when 𝑘 = −𝑗. In this case,

Q𝑢(𝑚∆𝜏) = 1
𝑁

𝑁/2−1
∑

𝑗=−𝑁/2
υυυ𝑗υυυ∗𝑇

𝑗 exp(𝑖2𝜋 𝑗𝑚/𝑁)
𝑁/2−1
∑

𝑝=−𝑁/2
(1) =

𝑁/2−1
∑

𝑗=−𝑁/2
υυυ𝑗υυυ∗𝑇

𝑗 exp(𝑖2𝜋 𝑗𝑚/𝑁). (118)

The spectral matrix is the Fourier transform of (118) in 𝜏 ,

S𝑢(𝑘∆𝑓) = ∆𝑡
𝑁/2−1
∑

𝑚=−𝑁/2

𝑁/2−1
∑

𝑗=−𝑁/2
υυυ𝑗υυυ∗𝑇

𝑗 exp(𝑖2𝜋 𝑗𝑚/𝑁) exp(−𝑖2𝜋 𝑘𝑚/𝑁). (119)

This is zero, except when 𝑗 = 𝑘, in which case

S𝑢(𝑘∆𝑓) = υυυ𝑘υυυ∗𝑇
𝑘 ∆𝑡

𝑁/2−1
∑

𝑚=−𝑁/2
(1) = 𝑁∆𝑡 υυυ𝑘υυυ∗𝑇

𝑘 = 1
∆𝑓 υυυ𝑘υυυ∗𝑇

𝑘 . (120)

In other words, the spectral matrix is the outer product of the signals’ Fourier coefficients with their
complex conjugate, divided by the width of the frequency bin ∆𝑓 = 1/(𝑁∆𝑡).

As a sanity check, we know that the area under the spectrum of a signal should equal its variance,
which in turn should equal 𝑄(0) by definition. From (118) we see that

Q𝑢(0) =
𝑁/2−1
∑

𝑗=−𝑁/2
υυυ𝑗υυυ∗𝑇

𝑗 . (121)

Indeed, integrating (120) over frequency gives the identical result

∆𝑓
𝑁/2−1
∑

𝑘=−𝑁/2
S𝑢(𝑘∆𝑓) =

𝑁/2−1
∑

𝑘=−𝑁/2
υυυ𝑘υυυ∗𝑇

𝑘 . (122)

If a transfer function H(𝑓) = H(𝑘∆𝑓) = H𝑘 is defined, such that

∆y =
𝑁/2−1
∑

𝑘=−𝑁/2
H𝑘υυυ𝑘 exp(−𝑖2𝜋 𝑘𝑝/𝑁), (123)

then it is seen that the spectral matrix transforms as

S𝑦(𝑘∆𝑓) = H𝑘S𝑢(𝑘∆𝑓) H∗𝑇
𝑘 . (124)

2.1.11 RotaƟonally-sampled turbulence spectra in mulƟ-blade coordinates

Atmospheric turbulence is input to the STAS turbine model as a spectral matrix. The matrix contains
the cross-spectra for every component of turbulence at every blade element, in the global coordinate
frame, transformed into multi-blade coordinates. That is,

S𝜓
𝑣 (𝑓) = S𝜓(v𝑔

𝑗/𝑔, v𝑔
𝑘/𝑔, 𝑓) (125)
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for all pairs (𝑗, 𝑘) of blade elements. As a simplification, these spectra are generated without taking
account of the way in which the wind turbine wake and induction field at the rotor distort the
atmospheric turbulence.

Since the blades are rotating, this motion is included, assuming a constant rotational speed, in
the spectra: they are rotationally sampled spectra. This can be formulated analytically for isotropic
turbulence, which is assumed here. Alternatively, spectra can be generated from time series using
(113) through (120), sampling rotating paths traced through a grid of turbulence. The latter time-
series approach can capture a more realistic turbulence field, whereas the analytical approach has the
advantage of being numerically smooth, employing no random numbers. Note that it is possible to
scale a set of spectra, within reason, to different wind speeds and rotor speeds; see Merz et al. (2019).

The present version of the STAS Aeroelastic module (Merz 2018) accepts wind inputs in the
global coordinate frame. This allows arbitrary blade deformations and yaw or tilt misalignments to
be considered, within the bounds of validity of the blade element momentum method. When there is
some asymmetry in the flow relative to the rotor, be this yaw, wind shear, or partial-wake conditions,
the resulting flow velocities seen by a blade are composed – conceptually, though not always in reality
– of three components:

1. the steady-state flow pattern about the rotor;

2. a periodic signal obtained as the blade rotates through the asymmetries in the steady-state flow
pattern; and

3. a stochastic signal as the blade rotates through the fluctuating turbulence field associated with
the flow.

Provided that the geometry and flow patterns do not change much – that is, for small perturbations
about the steady-state yaw orientation and flow patterns – items (2) and (3) can be implemented as
part of the rotationally-samped turbulence spectra, generated upfront.

The development proceeds in seven steps:

1. Formulate covariance functions for atmospheric turbulence, as a function of the (v𝑔)𝑥, (v𝑔)𝑦, (v𝑔)𝑧
component and distance of separation between points. In the present treatment, this is done
analytically with help from the theory of isotropic turbulence.

2. Formulate the paths traced through the combined mean and turbulent flow fields by each blade
element.

3. Obtain the rotationally-sampled covariance functions Q𝑣(𝜏) for (v𝑔)𝑥, (v𝑔)𝑦, (v𝑔)𝑧 turbulent ve-
locity components, experienced by the rotating blades.

4. Take the numerical Fourier transform of the covariance functions to get the turbulence spectra
S𝑣(𝑓).

5. Compute the periodic time series associated with the mean flow field around one full rotor
rotation. The mean flow field includes yaw misalignment, wind shear, and tower shadow effects.

6. Take the numerical Fourier transform of the time series and apply (120) to obtain the spectra
S𝑉 (𝑓) for the mean flow.

7. Perform the multi-blade coordinate transform of the spectral matrices. The separate spectra for
turbulence and mean flow can be superposed to obtain the total spectra, S𝜓

𝑣 (𝑓) + S𝜓
𝑉 (𝑓).

The covariance functions chosen to represent atmospheric turbulence are those described by Merz
(2015a), based on Connell (1982) and Kristensen and Frandsen (1982). The point-to-point covariance
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function for isotropic turbulence, following the Von Karman spectrum, is

𝑄𝑠𝑠(𝑠, 0) = 2𝜎2
𝑣

Γ(1/3) ( 𝑠
2.68𝐿𝑢

) 𝐾1/3 ( 𝑠
1.34𝐿𝑢

) , (126)

with derivative

𝑑𝑄𝑠𝑠(𝑠, 0)
𝑑𝑠 = − ( 2𝜎2

𝑣
Γ(1/3)) ( 1

1.34𝐿𝑢
) ( 𝑠

2.68𝐿𝑢
)

1/3
𝐾−2/3 ( 𝑠

1.34𝐿𝑢
) . (127)

Here
𝑠 = |s| = √𝑠2𝑥 + 𝑠2𝑦 + 𝑠2𝑧 (128)

is a distance in space, 𝜎2
𝑣 is the single-point variance in the turbulence field, 𝐿𝑢 is a length scale, which

tends to be on the order of 100 to 200 m for the lower atmospheric boundary layer, Γ is the gamma
function, and 𝐾 is the modified Bessel function of the second kind. The spatial correlations between
turbulence at any two points are (Davidson 2004)

𝑄𝑗𝑗(𝑠, 0) = 𝑄𝑠𝑠(𝑠, 0) + 𝑠
2

𝑑𝑄𝑠𝑠(𝑠, 0)
𝑑𝑠 − 𝑠2

𝑗
2𝑠

𝑑𝑄𝑠𝑠(𝑠, 0)
𝑑𝑠 (129)

for velocity components in the same direction, and

𝑄𝑗𝑘(𝑠, 0) = −𝑠𝑗𝑠𝑘
2𝑠

𝑑𝑄𝑠𝑠(𝑠, 0)
𝑑𝑠 (130)

for orthogonal components.
If one knows the path traced by a particle relative to the features in the turbulence – which for

purposes of analyzing a single wind turbine can be assumed to be frozen in time and convected at the
mean hub-height wind speed – then 𝑠𝑥, 𝑠𝑦, and 𝑠𝑧 relative to a second particle can be formulated, and
(129) and (130) used to compute the covariance functions. Figure 6 shows an example that illustrates
the basic idea. Here we wish to find the covariance between the 𝑣𝑧 component of wind at radial
coordinate 𝑟1 and the same component at coordinate 𝑟2, at time 𝜏 . Between 𝑡 = 0 and 𝑡 = 𝜏 , the
blade has rotated through an angle 𝜓 = Ω𝜏 , and the wind has convected a distance 𝑉∞𝜏 . Therefore,
the covariance between 𝑣𝑧(𝑟1, 0) and 𝑣𝑧(𝑟2, 𝜏) is the same as that between 𝑣𝑧(0, 0) and 𝑣𝑧(𝑠, 0), with 𝑠
upstream of (𝑟2, 𝜏) by a distance 𝑉∞𝜏 , as shown in the figure.

Figure 6 is a somewhat idealized case where the flow and the global coordinate system are aligned
with the rotor plane. Figure 7, on the other hand, shows the more general case. Given some coordinate
system with its origin on the axis of rotation, and assuming that the deformed shape of the blades
does not change significantly around the azimuth,11 such that its only motion is to revolve rigidly
about the axis of rotation, the position of a point on one of the blades at time 𝜏 can be written

r𝑔
𝑝/𝑔(𝜏) = O𝑔

𝑟/𝑔 + T𝑔
𝑦T𝑦

𝑛T𝑛
𝑑 (𝜓) r𝑑

𝑝/𝑟, 𝜓 = Ω𝜏. (131)

The driveshaft coordinate system rotates with the blades, and the transform T𝑛
𝑑 (𝜓) is the only variable

quantity: the vectors O𝑔
𝑟/𝑔 and r𝑑

𝑝/𝑑, and the transforms T𝑦
𝑛 (nacelle to yaw) and T𝑔

𝑦 (yaw to global),
are constant. The vector s𝑔 is then

s𝑔(𝜏) = r𝑔
2/𝑔(𝜏) − r𝑔

1/𝑔(0) − V𝑔
∞𝜏. (132)

Using (131),
s𝑔(𝜏) = T𝑔

𝑦T𝑦
𝑛[T𝑛

𝑑 (𝜓) r𝑑
2/𝑟 − T𝑛

𝑑 (0) r𝑑
1/𝑟] − V𝑔

∞𝜏. (133)

11Given that the length scale of the turbulence is on the order of 100 m, it is difficult to imagine that the blades could
deflect by an amount that would significantly influence the covariance function.
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Figure 6: An idealized geometry illustrating how the assumptions of frozen turbulence and uniform convection
velocity can be used to convert time separation in 𝜏 to spatial separation at the initial time 𝑡 = 0.

Figure 7: The general case where neither the points, the wind, nor the global coordinate system are aligned
with the rotorplane.
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Figure 8: Geometry for the computation of wind shear and tower shadow.

Wind shear and tower shadow are, we assume, periodic and deterministic effects associated with
the mean flow. Nonetheless, their correlation functions and spectra can be computed and superposed
with those of the turbulence. Figure 8 illustrates the concept. At right is a sketch of the 2D potential
flow field around the tower, along a two-dimensional plane orthogonal to the tower centerline.12 This
is defined relative to a wind coordinate system, whose 𝑋𝑤 axis is aligned with the wind direction; it
is assumed that the tilt in the flow relative to the tower is small. The 𝑍𝑑 axis (driveshaft coordinate
system) indicates the rotor’s axis of rotation. A point on one of the blades, located at r𝑑 relative to
the driveshaft coordinate system, describes a circle, revolving about the 𝑍𝑑 axis. This is seen from
above in the figure at right (which is simplified, since the plane of rotation need not be perfectly in-line
with the tower) and from the front in the figure at left. We want to know the vector s from the tower
centerline, at the height where the blade element passes, to the location of the blade element, shown
as a white circle.

The stream function for the potential flow field about a cylinder, in wind coordinates, with (𝑥 =
0, 𝑦 = 0) at the tower centerline, is (Burton et al. 2001)

𝜙 = 𝑉∞𝑦 (1 − 𝐷2

4(𝑥2 + 𝑦2)) . (134)

Velocity components are then

(V𝑤
𝑡 )𝑥 = ∂𝜙

∂𝑦 = 𝑉∞ [1 − (𝐷2

4 ) 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 ] (135)

12The profile computed by potential theory is valid upwind, but not directly downwind, of the tower.
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and
(V𝑤

𝑡 )𝑦 = −∂𝜙
∂𝑥 = −𝑉∞ (𝐷2

2 ) 𝑥𝑦
(𝑥2 + 𝑦2)2 . (136)

For purposes of the covariance, we want not the total velocity, but the perturbation with respect to
the mean flow; this is

(v𝑤
𝑡 )𝑥 = (V𝑤

𝑡 )𝑥 − 𝑉∞ = −𝑉∞ (𝐷2

4 ) 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 , (137)

with (v𝑤
𝑡 )𝑦 = (V𝑤

𝑡 )𝑦.
The vector s𝑔 can be written

s𝑔 = T𝑔
𝑦T𝑦

𝑛T𝑛
𝑑 (𝜓)r𝑑

𝑝/𝑟 − T𝑔
𝑦

⎡⎢
⎣

0
0

{T𝑦
𝑛T𝑛

𝑑 (𝜓0) r𝑑
𝑝/𝑟}𝑧

⎤⎥
⎦

(138)

where 𝜓0 is the rotor azimuth that places the element in-line with point P. The rotor azimuth 𝜓 is
the only quantity in (138) that varies dynamically.

In order to link the vector s𝑔 with 𝑥 and 𝑦 in (134), we define a special “analysis” coordinate
system, denoted by 𝛼. This is a two-dimensional space, in the plane of the flow at Point P (Fig. 8).
Define

ςςς = [𝑥𝛼

𝑦𝛼] = ⎡⎢
⎣

−𝑎

√|s|2 − 𝑎2

⎤⎥
⎦

. (139)

Then,

[𝑥
𝑦] = T𝑤

𝛼(𝜒)ςςς. (140)

In words, we map the length of the vector s to a vector ςςς in the two-dimensional potential-flow analysis
plane. The offset in the 𝑦𝛼 direction is the difference in length between s and its minimum value,
the offset 𝑎. The 𝑦𝛼 coordinate attains a maximum value of twice the blade-element radius when the
element is oriented straight up, at which point it loops around from the opposite side of the analytical
domain.

Once the velocity perturbations due to tower shadow are obtained in wind coordinates, they can
be transformed to global coordinates,

v𝑔
𝑡 = T𝑔

𝑤 v𝑤
𝑡 . (141)

The wind coordinate system is defined according to the incoming wind field at Point P.
The above assumptions are reasonable when the radial coordinate of the blade element is much

smaller than the tower radius. Some inaccuracy is to be expected near the blade root, where the blade
element radius is on the same order as the tower diameter, and the presence of the nacelle disturbs
the flow. In any case, it is the loading on the outer portion of the blades that is of concern; and here
it is expected that the approximations are valid.

Wind shear is implemented by defining the mean wind vector V𝑔
∞ as a function of elevation 𝑧𝑔.

Unless stated otherwise, for the analyses in this report a logarithmic profile

V𝑔
∞ = V𝑔

ref
ln(𝑧𝑔/ℎ0)
ln(𝑧𝑔

ref/ℎ0) (142)

has been used, with ℎ0 = 0.01 m. It is also possible to implement veer (a change in wind direction
with height) but this is not considered at present. The global position of the blade element, to an
accuracy sufficient for generating the wind spectra, is approximately

x𝑔
𝑒/𝑔 = O𝑔

𝑑/𝑔 + T𝑔
𝑑(𝜓) r𝑑. (143)
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Figure 9: The perturbation in the wind velocity due to shear and tower shadow. Units are m/s, and the average
wind speed is 10 m/s in the 𝑋𝑔 direction. For purposes of this plot, the 𝜓′ angle is zero when the blade is
straight up. (In the standard rotor coordinate system, 𝜓 = 0 is horizontal.)

The wind shear and tower shadow velocity fluctuations are correlated with each other, but they are
assumed to be uncorrelated with the turbulence. This means that the covariance functions and spectra
for wind shear and tower shadow should be computed together; but they can then be superposed with
the corresponding turbulent quantities.

Figures 9 and 10 illustrate the wind velocity profiles seen by a rotating blade element, for respect-
ively aligned and yawed flow conditions. Yawing rotates the tower shadow and wind shear profiles
relative to the blade path, such that the deep flow-direction velocity deficit appears in both the axial
and transverse components of wind speed, relative to the rotor.

Figure 11 shows some examples of the covariance functions of rotationally-sampled turbulence
under ideal operating conditions, when the wind is aligned with the rotor, with the exception of a
small rotor tilt angle. Looking at the single-point autocovariance, whose curve is shown in every plot,
there is a slow decay in coherence with a period of about 100 s – the enveloping curve connecting
the peaks – that represents the length scale of the turbulence being convected past the rotor. On
top of this is an oscillatory signal associated with the rotor rotation: the coherence drops when the
blade is oriented at the opposite side of the rotor, and increases as the blade returns to its original
azimuth. The plot at lower right shows the covariance obtained between different blades, where the
phase offset of one-third the rotational period is evident. At lower left there are two curves showing
the covariance of orthogonal components; these are uncorrelated if measured at a single point 𝜏 = 0
but, due ultimately to the conservation of mass (Davidson 2004), they are weakly correlated over some
distance.

The autocovariance of the (v𝑔)𝑥 component of velocity is shown at the left of Fig. 12, and its
Fourier transform, the spectum, at right. The case of aligned flow is compared against that where the
flow direction is misaligned by 40∘ in yaw. In these plots, which include only turbulence, not periodic
effects like wind shear and tower shadow, yaw misalignment has a minor influence on the spectrum.13

The turbulence covariance functions (129) and (130) can be transformed into multi-blade coordin-
ates; or, more precisely, the covariance can be computed for the multi-blade-coordinate transformed

13As the spectra of wind shear and tower shadow occur as spikes of fixed area (discrete delta functions) at multiples of
the rotational frequency, the height of the spikes depends on the discretization of the frequency, that is, the step size ∆𝑓.
It therefore isn’t so useful to plot their contribution alongside the stochastic turbulence spectrum, because the heights
cannot be directly compared.
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Figure 10: The perturbation in the wind velocity, in coordinates aligned with the rotor, due to shear and tower
shadow, as a function of the wind angle (or yaw misalignment).

velocity, as
Q𝜓

𝑗𝑘 = 𝐸 [T𝜓
𝐵(0) v𝑗,𝑏(0) v𝑇

𝑘,𝑏(𝜏) T𝜓𝑇
𝐵 (𝜏)] (144)

where v𝑏 is some triplet of velocity components, one for each blade. Illustrative results are shown
in Fig. 13. The transformation reduces the covariance – not surprisingly, because the multi-blade
coordinate transform in effect averages over the three blades, which are located some distance apart –
and redistributes the remaining rotationally-sampled energy to multiples of the blade passing frequency,
as opposed to the rotor’s rotational frequency.

In closing, a note on what is missing from the multi-blade-coordinate transformed wind spectra, as
derived in this section and implemented in STAS Wind. The methods include the effects of stochastic
turbulence and the asymmetry of wind shear and tower shadow, although these have been simplified
by neglecting wake (induction) effects. In addition, implicit in (129) and (130) is the assumption that
the turbulence is isotropic. There is no reason that these particular equations must be used; we have
adopted them because they provide an analytic description of the correlation functions, which can then
be evaluated to high numerical precision.14 The multi-blade coordinate transform eliminates the first
harmonic – that is to say, linear trends in the flow field across the rotor in the fixed frame – from the
equations of motion. The way in which wind shear and tower shadow were implemented account for
higher harmonics. However, under yawed flow conditions there are also higher harmonics associated
with nonlinearities in the aerodynamic forces on the blades, interacting with the misaligned flow field.
These higher harmonics are neglected, being accounted for neither in the turbulence spectra, nor in
the linearized aeroelastic equations. Floquet theory (Johnson 1994) can be used to generate linear
time-invariant dynamic equations for higher harmonics.

2.2 Transfer funcƟons and performance metrics
Aside from basic stability considerations, which can be determined by looking at the damping ratios

𝜁𝑘 = √ 𝑅2

1 + 𝑅2 , 𝑅 = ℜ{𝜆𝑘}
ℑ{𝜆𝑘} (145)

14If a more realistic atmospheric turbulence model is desired, then the rotationally-sampled cross-spectra may be
generated numerically, by following the path (131) through a number of Monte-Carlo realizations of the turbulence field.
It is also possible that other analytical formulations with greater generality exist in the literature.
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Figure 11: Examples of turbulence covariance functions. Upper left: covariance of the (v𝑔)𝑥 component (almost
parallel with the axis of rotor rotation, except for the tilt angle) between two elements on the same blade. Upper
right: autocovariance of the three velocity components at the same element. Lower left: covariance between
the (v𝑔)𝑥 component of velocity and the three components of v𝑔 (the 𝑥 component being the autocovariance)
at the same element. Lower right: covariance of the (v𝑔)𝑥 component between two blades, compared with the
autocovariance; the time axis is magnified in order to emphasize the phase offset. Results were obtained using
the following input parameters: 𝑉∞ = 10 m/s, 𝐼 = 0.16, 𝐿𝑢 = 180 m, and Ω = 0.867 rad/s.
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Figure 12: The covariance (at left) and associated spectra (at right) of the axial component of wind speed under
aligned and yawed flow conditions.

Figure 13: At left: the multi-blade-coordinate transformation of the covariance curves in the lower left plot of
Fig. 11. At right: the associated spectra.
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Table I: Key quantities of interest for load control of an offshore wind turbine foundation.

Disturbances Controls Load metrics Other metrics
F𝑔

𝑤 Wave loads ̂𝑃𝑒 Generator power δδδ𝑔
𝑛/𝑔 Nacelle displacements Ω Rotor speed

V𝑟
𝑅 Rotor-avg. wind ̂βββ Blade pitch M𝐹

𝑓 Mud-line moments 𝑃𝑒 Elec. power
�̂� Nacelle yaw δδδ𝑝

𝑏 Blade tip deflections
M𝑝

𝑏 Blade root moments

Table II: Key sensors available to the control system.

Sensors:
Ω Rotor speed
βββ Blade pitch (𝛽1, 𝛽2, 𝛽3)
𝜒 Nacelle yaw

𝑃 𝑒 Electric power
a𝑛 Nacelle acceleration
𝑉 𝑎 Anemometer wind speed
𝜃𝑎 Anemometer wind direction

of the eigenvalues, we desire some metrics of performance for the active load control functions. Table
I summarizes the key inputs (disturbances) and outputs (control actions and load metrics). The ideal
controller would prevent the disturbances from influencing the loads – that is, the disturbance-to-load
transfer function should be small – while using minimal control actions: the disturbance-to-control
transfer function should also be small. Of course, these objectives are conflicting, and a well-designed
controller must strike a compromise between control activity and effectivity.

Also of interest are the sensors available to the control system. Table II lists a selection of standard
sensors.

The transfer functions between the assorted combinations of disturbances, sensors, controls, and
metrics have the interpretations listed in Table III. Various aspects of system behavior and perform-
ance can be visualized and explained by looking at the transfer functions, and relating the features
seen in the transfer functions to the modes of the system.

2.3 Normal operaƟon
Consider an offshore wind turbine operating normally in a typical wind climate. Turbulence in the
wind, and ocean waves, introduce fluctuating loads that excite structural motions. We are interested
to know what modes are excited, and how these each contribute to the internal loads in the support
structure.

Table III: Meaning of different types of closed-loop transfer functions.

Disturbance→Control How active are the controls?
Disturbance→Metric How effective is the controller?
Disturbance→Sensor Can disturbances be measured?
Control→Metric Are the objectives influenced by the controls?
Metric→Control(𝑎) Does the controller respond to deviations in performance?
Metric→Sensor(𝑎) Can the performance be measured?
Sensor→Control Controller’s internal dynamics and response.
Sensor→Metric How important are various sensors?
(a) Relevant if the loop is closed with output feedback.
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Table IV: Standard wind turbine control functions.

Function Objective Inputs Outputs
Rotor speed control Maintain target rotor speed Ω, 𝑉 ∗

∞, ̂𝑃𝑜 ̂𝛽0, ̂𝑃𝑒
Blade pitch (a) Ω − ̂𝛺 ̂𝛽0
Generator power (b) Ω, ̂𝑃𝑜 ̂𝑃𝑒

Nacelle yaw Keep rotor oriented with wind 𝜃𝑎 �̂�
Virtual induction generator Damp driveshaft torsion Ω ̂𝑃𝑒
Tower fore-aft damping Damp first resonant mode (a𝑛)𝑥 ̂𝛽0
Tower side-to-side damping Damp first resonant mode (a𝑛)𝑦 (c)
Wind shear compensation Reduce cyclic blade loads (d) ̂𝛽𝑠
(a) Above 𝑉𝑟: pitch to control rotor speed. Below 𝑉𝑟: saturate at zero.
(b) Above 𝑉𝑟: saturate at rated power. Below 𝑉𝑟: track maximum power point.
(c) Either generator torque (via ̂𝑃𝑒) or rotor IBP sine component ̂𝛽𝑠 may be used.
(d) An estimate of asymmetric blade or nacelle loads (deflections): a𝑛 or strain.
a𝑛: measured nacelle acceleration.

̂𝑃𝑒: electric power command.
̂𝑃𝑜: operator power command.

𝑉𝑟: wind speed at rated or commanded power.
𝑉 ∗

∞: wind speed, estimated by a state observer.
̂𝛽0: collective blade pitch command.
̂𝛽𝑐: cosine blade pitch command.
̂𝛽𝑠: sine blade pitch command.

𝜃𝑎: nacelle anemometer wind direction.
�̂�: measured nacelle yaw angle.
Ω: measured rotor speed.

̂𝛺: Target rotor speed.

2.3.1 Control funcƟons

Table IV summarizes the control functions that are active during normal operation. Rotor speed
control and nacelle yaw are the most basic and essential control functions, required for the wind
turbine to operate and generate power. A typical architecture for the rotor speed control function
has separate blade pitch and generator power control loops, each of which saturates when the other
becomes active. Large commercial wind turbines have also a suite of control functions that reduce
the severity of certain load effects, such as tower vibration and wind shear. To save wear on the
actuators, these load-control functions may be activated or deactivated according to some threshold
criteria. A supervisory level of control handles such decisions, as well as safety functions, start-up,
and shut-down.

A control system design that implements the control functions in Table IV is described by Merz
and Pedersen (2018), with an updated rotor speed control function (Merz et al. 2019) applied in the
present work.

2.3.2 Aligned wind and waves

First we look at the baseline case where the rotor is properly aligned with the incoming wind, and
the ocean waves approach from the same direction as the wind. In this case the fluctuating loads
are primarily in the fore-aft direction. Inputs are considered to be the (v𝑔)𝑥 component of the rotor-
average wind, and the (F𝑔)𝑥 component of the nodal force at the waterline.

Figure 14 shows the transfer functions from these inputs to the fore-aft and side-to-side mudline
bending moments, when the mean wind speed is 10 m/s. A change in the steady (zero-frequency)
wind speed results in a change in the steady fore-aft bending moment (a), due to the aerodynamic
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Figure 14: Normal operation, 𝑉∞ = 10 m/s. Transfer functions from rotor-average wind speed (at left) and
waterline wave force (at right) to mudline bending moment. Transfer function units are, for ∂𝑀/∂𝑣, MN⋅s, and
for ∂𝑀/∂𝐹 , m.

thrust on the rotor; but also the side-to-side bending moment (b), due to the change in the generator
torque. Contrast this with the effect of waterline forces (right-hand plots), where a perturbation in
the mean current load does not at all influence the side-to-side bending. The first resonant modes of
the tower (c) form the dominant features in the plots. The first fore-aft and side-to-side modes have
approximately the same natural frequency, near 0.24 Hz; with the present controller, both of these
are actively damped, the fore-aft mode by blade pitch and the side-to-side mode by generator torque.
The second tower resonant modes at (d) are also present, but the response is less sensitive to wind
fluctuations than at the frequency of the first modes; in addition, wind and wave disturbances at the
second resonant frequency are expected to be small. Two particular frequencies are therefore singled
out for further investigation: the steady state response (a) and (b) near zero frequency, and the first
resonant frequency (c).

We focus the present discussion on the resonant response (c). Table V lists the modes that
contribute significantly to the value of the transfer function at the resonant frequency. Recall that
𝒫, from (17), is the normalized projection of an individual modal transfer function in the direction
(phase) of the total transfer function – the total, equal by definition to 1, being the sum of all the
modal projections. The modes in Table V were chosen by ranking the projections in decreasing order
of magnitude, and truncating the series when the cumulative sum approached unity. There are 386
modes in the present model, yet only two to four contribute meaningfully to the tower loads at the
first tower resonant frequency – a considerable simplification!

The fore-aft motion of the tower is governed by two oscillatory modes: one mode associated with
the mass of the rotor nacelle assembly, oscillating against the tower which acts as an elastic spring;
and another mode associated with the band-pass filter in the active damping control loop. The
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Table V: Normal operation, 𝑉∞ = 10 m/s. A list of the modes that contribute to the wind-speed-to-mudline-
moment transfer functions at the first tower resonant frequency. The frequency 𝑓1 is 0.238 Hz, approximately
the natural frequency of the tower fore-aft and side-to-side modes when there is no active damping.

Fore-aft moment
𝑓𝑛 𝜁 𝒫(𝑓1) Description

0.250 0.085 0.63 First tower fore-aft
0.229 0.095 0.41 Tower fore-aft active damping control

Side-to-side moment
𝑓𝑛 𝜁 𝒫(𝑓1) Description

0.245 0.037 1.51 First tower side-to-side
0.250 0.085 −0.23 First tower fore-aft
0.229 0.095 −0.21 Tower fore-aft active damping control
0.237 0.079 −0.08 Tower side-to-side active damping control

Figure 15: Normal operation, 𝑉∞ = 10 m/s. The contribution of the 1st tower fore-aft mode and active fore-aft
damping mode to the total transfer function of nacelle fore-aft displacement.

characteristics of these modes are summarized in Table VI. For each mode, the amplitude and phase
angle associated with relevant metrics, control actions, and sensor measurements are listed.

If the active damping control gain were set to zero, the two modes would be independent: the
tower mode would contain the tower motions, and the active damping control mode would contain the
band-pass filter, with no overlap. As it is, with the active damping control engaged, the modes are
mixed: what we call the “first tower” mode contains contributions from both the tower and controller,
and likewise for the active damping control mode; which mode is given which name, is a question of
degree.

Now let us see how the two fore-aft modes combine to produce the tower resonant response. Figure
15 shows the individual ∂𝜁𝑥/∂𝑣 (wind speed to tower fore-aft displacement) transfer functions, their
sum, and the full transfer function. Consistent with the values in Table V, the transfer function in
the vicinity of resonance is dominated by the two modes – also well away from the resonant frequency,
between 0.1 and 0.5 Hz.

Referring to the modal properties in Table VI, the reader may notice that the pitch angle 𝛽0 and
the nacelle fore-aft velocity (v𝑛)𝑥 are not in-phase for either of the fore-aft modes. It is expected that
𝛽0 and (v𝑛)𝑥 should be in-phase in order to provide effective damping. In fact, they are in-phase at
the nominal resonant frequency of the tower; this can be seen in Fig. 16, which compares the transfer
functions from the wind speed disurbance to the blade pitch and nacelle velocity. The characteristics
of the two resonant modes – the way in which their natural frequencies split away to each side of the
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Table VI: Normal operation, 𝑉∞ = 10 m/s. Amplitudes and phase angles of selected response variables, for
each of the modes that contribute to the wind-speed-to-mudline-moment transfer functions at the first tower
resonant frequency. Amplitudes are in the given units, and phase angles −𝜋 < 𝜃 ≤ 𝜋 are normalized by 𝜋, that
is, −1 is a phase angle of −𝜋 and +1 is a phase angle of 𝜋. Note that these are quantities derived from the
mode shapes, not the transfer functions with respect to an external input like Fig. 14.

1st fore-aft FA damping 1st side-to-side SS damping
𝑓𝑛 (Hz) 0.250 0.229 0.245 0.237
𝜁 (-) 0.085 0.095 0.037 0.079
(δδδ𝑔

𝑛/𝑔)𝑥 (m) 1.000 0.000 1.000 0.000 0.286 0.561 0.363 0.764
(δδδ𝑔

𝑛/𝑔)𝑦 (m) 0.067 0.840 0.072 −0.725 1.000 0.000 1.000 0.000
(M𝐹

𝐹 )𝑥 (MNm) 25.12 −0.151 22.84 0.291 356.2 −0.990 344.9 −0.978
(M𝐹

𝐹 )𝑦 (MNm) 353.1 0.007 348.8 0.007 101.1 0.565 127.4 0.770
(δδδ𝑔

∅)𝑥 (m) 0.975 −0.080 1.335 −0.058 0.327 0.596 0.480 0.789
(δδδ𝑔

𝑐)𝑥 (m) 0.067 −0.692 0.056 −0.664 0.176 −0.050 0.151 0.160
(δδδ𝑔

𝑠)𝑥 (m) 1.012 −0.062 1.014 −0.056 0.271 0.492 0.353 0.711
(M𝑝

𝑏)𝑦 (MNm) 3.825 0.474 5.906 0.792 0.605 −0.434 1.738 −0.316
(M𝑝

𝑏)𝑧 (MNm) 0.648 0.907 1.224 0.147 3.690 0.408 8.596 0.609
𝑇𝑔 (MNm) 1.885 0.937 3.784 0.162 13.90 0.417 32.05 0.620
𝛽∅ (deg) 1.070 0.082 2.222 0.928 0.202 0.898 1.270 −0.709
Ω (rad/s) 0.024 0.999 0.031 0.991 0.065 0.868 0.135 −0.903
Ω (rad/s) 0.021 0.814 0.028 0.817 0.057 0.690 0.121 0.920
𝛽∅ (deg) 0.991 −0.071 2.096 0.786 0.184 0.751 1.184 −0.855
𝑃 𝑒 (MW) 1.702 0.882 2.799 0.119 11.06 0.370 25.60 0.574
(v𝑛)𝑥 (m/s) 1.580 0.527 1.444 0.530 0.441 −0.927 0.543 −0.710
(v𝑛)𝑦 (m/s) 0.106 −0.632 0.104 −0.194 1.539 0.512 1.493 0.525
𝑓𝑛: natural frequency.
𝜁: damping ratio.
δδδ𝑔

𝑛/𝑔: nacelle displacement in the global coordinate frame.
M𝐹

𝐹 : foundation mudline internal bending moments in the foundation coordinate frame.
δδδ𝑔

∅,𝑐,𝑠: blade tip deflection in the MBC frame; collective, cos, sin components.
M𝑝

𝑏 : blade root internal bending moments in the pitch coordinate frame.
𝑇𝑔: generator torque.
𝛽0: blade collective pitch.
Ω: rotor speed.
Ω: measured rotor speed.
𝛽0: measured blade pitch.
𝑃 𝑒: measured electrical power.
v𝑛: measured nacelle velocity.
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Figure 16: Normal operation, 𝑉∞ = 10 m/s. The wind speed to blade pitch and nacelle fore-aft velocity transfer
functions, showing in particular the behavior of the relative phase in the vicinity of the tower’s natural resonant
frequency (dashed line).

nominal tower frequency of ca. 0.24 Hz, with a moderate increase in the damping ratio – result from
an interaction of the bandpass filter in the active damping function, the notch filter on the rotor speed
control function, and the natural tower resonance.

The side-to-side modes, in contrast with the fore-aft modes, have a straightforward behavior. The
frequencies of the tower and active damping modes remain aligned, and the generator torque is in-
phase with the velocity at the resonant frequency, as one would expect. This straightforward behavior,
in contrast with the fore-aft mode, likely results from the responsiveness of the electric system.

The transfer functions in Fig. 14 indicate that the difference in phase between the fore-aft and side-
to-side moments changes abruptly in the vicinity of the resonant frequency. Just below the resonant
frequency, the fore-aft response leads the side-to-side by 𝜋/2, this changing to lagging by 𝜋/2 just
above the resonant frequency. This pattern indicates a precessional motion, an example of which is
illustrated in Fig. 17. Here an artificial wind speed input signal is introduced,15 consisting of a large
number of sinusoids with random phases, and frequencies between 0.22 and 0.26 Hz. As the frequency
content of the input signal varies within this range, the phase between the fore-aft and side-to-side
motion changes, giving patterns as seen in the plot at left. The amplitude of the fore-aft motion is
an order of magnitude greater than that of the side-to-side motion, which is evident when the axes
are scaled uniformly, as in the plot at lower right.16 It is concluded that although the nacelle traces a
precessing orbit, the magnitude in the side-to-side direction is small, and the dominant motion, and
loading of the foundation, will occur in the fore-aft direction.

Tables VII and VIII list respectively the first-harmonic and dissipative powers passing through
the aerodynamic forces and generator air gap, when the turbine is oscillating freely in each mode.
Evidently, the use of the generator to damp tower side-to-side motion is quite ineffective, in the sense
that the power fluctuations in the grid are much larger than the rate of dissipation of energy from the
structure into the grid. This is a consequence of the fact that the angular speed of the rotor is much
larger than that of the tower motion that the generator is attempting to damp: the Ω0𝛥𝑇𝑔 term is
responsible for the majority of the power oscillations.

In summary: although this section is still far from having provided a complete picture of the turbine
dynamics, we have gone into quite some detail on the modes that contribute to the tower mudline
bending moment, in the vicinity of the first tower resonant frequency, under normal operation. Each

15The input is artificial in the sense of omitting the low frequencies. But the signal is indeed sufficient to excite the
resonant dynamics across the desired frequency band.

16These results are comparable with those of Hansen et al. (2006).
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Figure 17: Normal operation, 𝑉∞ = 10 m/s. A precessing pattern of nacelle displacement is experienced when
exciting resonance with a narrow-band stochastic signal near the resonant frequency. Upper right: a sample
of the wind speed input. At left: a close-up of the pattern, with different scaling applied to the 𝑥 and 𝑦 axes.
Lower right: a long-term trace of the nacelle displacement with uniform scaling of the 𝑥 and 𝑦 axes.

Table VII: Normal operation, 𝑉∞ = 10 m/s. First-harmonic oscillatory power in MW per unit modal displace-
ment of the mode shapes from Table VI.

1st fore-aft FA damping 1st side-to-side SS damping
Aerodynamic 1.895 0.480 2.111 0.495 0.665 −0.855 0.976 −0.686
Generator 4.598 −0.511 5.897 −0.433 11.83 −0.540 26.41 −0.334

Table VIII: Normal operation, 𝑉∞ = 10 m/s. Dissipative power in MW per unit modal displacement of the
mode shapes from Table VI.

1st fore-aft FA damping 1st side-to-side SS damping
Aerodynamic −1.234 −1.205 −0.092 −0.394
Generator 0.008 −0.098 −0.504 −1.753
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Table IX: Bin centers and widths (increments) used for categorizing the environmental conditions.

Value Units min max width
𝑉∞ m/s 2 22 4
𝜃𝐸

𝑉 deg -165 165 30
𝐻𝑠 m 1 10 1
𝑇𝑝 s 3 18 1
𝜃𝐸

𝑤 deg -165 165 30

mode was described in terms of its natural frequency and damping ratio; and three sets of response
variables, representing key metrics of structural loading, control actions, and sensor measurements.
We have looked at how power is transferred across important system boundaries – aerodynamic forces,
the electric grid, and seabed – with a particular focus on the dissipation of oscillations. With this
understanding of the basic modes and transfer functions, we are in a position to develop alternate
control strategies in Sections 4 and 5.

2.3.3 Misaligned waves

When the ocean waves approach from a direction that is misaligned with respect to the prevailing
wind, there is a greater component of excitation in the side-to-side direction. The waves can be
considered as purely alternating, so the mode shapes from Section 2.3.2, obtained at the steady-state
operating point, are unchanged. It is the ψψψb terms from (15) that change.

To put things in the proper perspective, we need to introduce the wind and wave spectra to the
analysis, which gives us quantitative, stochastic estimates of the tower motions and internal bending
moments. This introduces a considerable complication, as particular combinations of wind and wave
climates need to be specified.

Data for the North Sea area, hindcast over a period of 50 years in three-hour increments, are
available from the Norwegian Meteorological Institute (Reistad et al. 2009). A location in the vicinity
of the Dogger Bank was extracted in order to provide a basis for analysis. Table IX lists the bins
used for categorizing the combined wind and wave states. Here the 𝜃𝐸 coordinate system, which
is convenient to use as a global coordinate system for the analyses, has its 𝑋𝐸 axis pointing East,
the 𝑍𝐸 axis pointing skywards, and a positive angle counterclockwise, in the standard right-handed
convention. Angles are measured from −𝜋 to 𝜋 (−180∘ to 180∘). Note that this is different from the
compass coordinate system, which has its 𝑋𝑐 axis pointing North, clockwise as a positive angle, and
a range of angles from 0∘ to 360∘.

The binning is done according to a linear weighting. For instance, a wind speed of 11 m/s would
be counted as 0.75 of an occurrence in the 10 m/s bin, and 0.25 in the 14 m/s bin. This procedure
diffuses and smooths the probability distribution throughout the bin-space. It has the advantage of
avoiding the case where two nearly identical cases are assigned to different bins; to give an example,
a wave direction of 119∘ assigned to the 105∘ bin and a direction of 121∘ assigned to the 135∘ bin.

When the data are sorted according to the most likely conditions, the top ten are listed in Table
X. From this it can be stated that the most likely conditions are winds near the rated wind speed,
combined with wind-driven waves aligned within ±30∘ of the wind direction. The wind-driven waves
are of small amplitude but short period, where they will tend to excite tower resonance.

Large misalignments of wind and waves are common. The misalignment is 60∘ or more (bin-wise)
36% of the time; however such misalignment is rare during storm conditions. This is to be expected,
since storm waves will tend to align with the wind and dominate swell from other directions. The
breakdown of wave misalignment, with values representing bin centers, is:

• 22% of the time misalignment is ≥ 60∘ when the wind is 2 or 6 m/s.

• 10% of the time misalignment is ≥ 60∘ when the wind is 10 m/s.
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Table X: The ten most likely environmental conditions.

𝑝 𝑉∞ 𝜃𝐸
𝑉 𝐻𝑠 𝑇𝑝 𝜃𝐸

𝑤 𝜃𝐸
𝑉 - 𝜃𝐸

𝑤
0.00352 14 -135 2 6 -135 0
0.00343 10 -105 1 5 -105 0
0.00313 14 -105 2 6 -105 0
0.00273 14 -135 2 6 -105 -30
0.00272 10 -75 1 5 -75 0
0.00272 14 -165 2 6 165 30
0.00271 10 -135 1 5 -105 -30
0.00256 10 -105 1 4 -105 0
0.00249 10 -105 1 5 -75 -30
0.00244 10 -135 1 5 -135 0

Table XI: Selected wind-wave environmental conditions.

Case 𝑝 𝑉∞ (m/s) 𝐻𝑠 (m) 𝑇𝑝 (s) |𝜃𝑉 − 𝜃𝑤|
10-2-0 0.03260 10 2 6 0
10-2-30 0.01214 10 2 6 30
10-2-60 0.00312 10 2 6 60
10-2-90 0.00109 10 2 6 90
14-2-0 0.02199 14 2 6 0
14-2-30 0.01820 14 2 6 30
14-2-60 0.00211 14 2 6 60
14-2-90 0.00053 14 2 6 90
2-3-x 0.00010 2 3 12 (-)
14-4-30 0.00059 14 4 8 30
14-3-90 0.00014 14 3 6 90

• 4% of the time misalignment is ≥ 60∘ when the wind is ≥ 14 m/s.

Table XI lists the selected wind-wave conditions, for use in designing and evaluating load-reducing
controls. The first eight cases cover normal operation below and above the rated wind speed, with
relatively short-period waves approaching from different directions relative to the wind. Due to the
short period it is expected that these waves will excite tower resonance and, without the help of special
control functions, contribute a disproportionate amount of the accumulated fatigue. The cases below
the line are rare, yet observed, conditions. The first case is a large swell, when there is no wind locally
and the turbine will be idling; in the second case large, short-period waves approach at an angle; and
in the third case short-period waves approach from a direction orthogonal to the wind.

During Cases 10-2-0, -30, -60, and -90 the auto-spectra of nacelle fore-aft and side-to-side dis-
placement are as shown in Fig. 18. These spectra are, in essence, a combination of the transfer
functions of Fig. 14 and the spectra of Fig. 13. There are four features of particular note, in the
frequency band below 0.5 Hz. The low-frequency peak is the quasi-static response of the tower to
atmospheric turbulence. The peak at (b) is associated with the response to ocean wave loads on the
tower. The neighboring peak at (c) is the first tower resonant mode, excited primarily by the relatively
short-period waves. The spike at (d), the 3P blade-passing frequency, is due to periodic loads on the
rotor, namely wind shear and tower shadow, whereas the lower and more rounded hump at the same
frequency is due to rotational sampling of turbulence.

There is less damping in the side-to-side than the fore-aft direction (Table V). As a consequence,
the resonant response in the side-to-side direction to ocean waves is more severe than that in the
fore-aft direction.17 The resonant response is significant already at 30∘ misalignment.

17It would be even more severe, but the response is reduced by active damping control using the generator.
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Figure 18: Case 10-2-0: One-sided spectra of nacelle fore-aft (at left) and side-to-side (at right) displacement.
The dashed lines are the integrals of the spectra; the cumulative integral of each spectral curve is the variance.

The joint probability density function, which we assume to be Gaussian, can be computed from
the spectra in Fig. 18, together with the cross-spectra 𝑆𝑜(𝜉𝑥, 𝜉𝑦, 𝑓) and 𝑆𝑜(𝜉𝑦, 𝜉𝑥, 𝑓). The probability
densities of nacelle displacement for various degrees of wave misalignment are plotted in Fig. 19. The
shading is done on a logarithmic scale, proportional to log10 𝑝, such that the edge of the visible region
is quite unlikely, roughly 10−4 the density of the center. In other words, the nacelle will rarely displace
0.5 m from its static position – though this is possible. What we see in the probabilities, as well as
the spectra of Fig. 18 is encouraging: the degree of coupling between the fore-aft and side-to-side
directions is small, although evident, and the trends follow what could be guessed about the solution
using common sense.

3 Control design
Figure 20 shows the system architecture and terminology that we will use in designing the active load
control functions. The plant consists of the open-loop wind turbine and sensor dynamics, as shown in
the cascade at the right-hand side of the figure. The disturbances acting on the wind turbine are the
wind and waves w, and sensor noise n. Control inputs u are a blade pitch command for each blade
̂βββ, a commanded electrical power ̂𝑃𝑒, and a yaw angle command �̂�. The wind turbine outputs raw

measurement quantities y𝑇 , which are measured with some sensor dynamics, consisting of states x𝑠.
The filtered sensor outputs fed to the controller are y𝑇 . The linearized model of the plant is reduced
to the relevant modes, that contribute to the input-to-sensor and disturbance-to-sensor dynamics; this
combines the turbine and sensor dynamics into a single set of equations, with modal states ξξξ.

It is assumed that the sensor system reports the nacelle displacement, which has been integrated
based on a measurement of the nacelle acceleration. Similarly, where relevant it is assumed that the
velocity of nacelle motion is also known.

The controller consists of two modules, a state observer and a control law. The state observer
consists of a (typically low-order) model of the plant, which may be augmented with states representing
disturbances. The purpose is to estimate a selection of the states ξξξ and disturbances w, for use in the
control law.

The control law sets commands

u = ⎡⎢
⎣

̂βββ
̂𝑃𝑒

�̂�
⎤⎥
⎦
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Figure 19: Cases 10-2-x: Joint probability density functions, shaded according to a logarithmic scale (−2 ≤
log10 𝑝 ≤ 2), showing wind-direction and transverse nacelle displacements under different wave directions.

Figure 20: The system architecture and terminology used for designing the wind turbine controller.
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Table XII: Examples of how some common types of controllers fit into the general architecture of Fig. 20.

Control paradigm Observer Control law
PI (none) 𝑢 = 𝐾𝑃 (𝑟 − 𝑦) + 𝐾𝐼𝑥𝑐
Output-feedback (none) u = Ky𝑇
LQR, LQG z∗ observes ξξξ u = K𝑧z∗

LQR tracking z∗ observes ξξξ u = K𝑧z∗ + K𝑥x𝑐 + K𝑟r

for respectively the pitch angle of each of the three blades, the electrical power, and the nacelle yaw
angle, taking as inputs the sensor measurements y𝑇 , observed states z∗, and set-points r. The control
law may be dynamic, containing its own states. The control states x𝑐 often represent integrators for
reference tracking, and filters designed to isolate particular frequency bands.

The general linear architecture of Fig. 20 accommodates common control design paradigms, such
as those listed in Table XII. In all cases the goal is to arrive at a set of gains (K𝑥, K𝑦, K𝑧, K𝑟) that
give a desireable level of performance; at least, within the artificial, yet useful, linear world in the
immediate vicinity of a selected operating point.

3.1 OpƟmal control gains
The derivations in this section and the next are adapted from a variety of developments in linear-
quadratic control theory: Athans and Falb (1966), Schultz and Melsa (1967), Friedland (1986), Stengel
(1994), and Stevens and Lewis (2003). We are wholly in the “linear world” now, and so to be concise
we drop the ∆ symbols from all the linearized variables.

Linear-quadratic regulator (LQR) design is a time-domain method, whereby the performance of the
system is evaluated in terms of its response to a set of prescribed initial conditions or step functions.
Within these confines – linear system, quadradic performance index – there is quite a lot of freedom
in terms of how to structure the controller and tune the system behavior. Regardless, the resulting
system can, with perhaps some manipulation, be put into the form employed here.

For purposes of the present abbreviated derivation, let us first neglect the disturbances (w, n), and
then write the system of Fig. 20 concisely as

𝑑x
𝑑𝑡 = Ax + B′u = Ax − BKx − B𝑟K𝑟r. (146)

If we like, we may apply the separation principle, and assume that the states ξξξ are available directly
from the plant; in any case, the system takes the form (146). We now define a quadratic performance
index

Π(x(𝑡), r(𝑡)) = ∫
∞

𝑡
p𝑇 Wp 𝑑𝜏 + εεε𝑇 W𝜀εεε, p = C𝑝x(𝜏) + D𝑝u(𝜏), εεε = Hx − r. (147)

Here x and r are values attained at the steady state of (146), namely

x = (A − BK)−1B𝑟K𝑟r, (148)

for some specified r. In solving for the optimal gains we assume that the system is initially at rest at
x, subject to a steady r; then, at the initial time 𝑡, r is reduced to zero in a step function. The system
then evolves according to

𝑑x
𝑑𝑡 = (A − BK)x, (149)

and the cost function
Π = ∫

∞

𝑡
p𝑇 Wp 𝑑𝜏. (150)
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Now, the time derivative of (150) is

𝑑Π
𝑑𝑡 = ∂Π

∂x
𝑑x
𝑑𝑡 = −p𝑇 Wp, (151)

since 𝑑r/𝑑𝑡 = 0 over the relevant time period, and Π is not a direct function of time. Write (151) as

ℋ = λλλ𝑇 (Ax + B′u) + (x𝑇 C𝑇
𝑝 + u𝑇 D𝑇

𝑝 )W(C𝑝x + D𝑝u) = 0. (152)

The optimal control is obtained when ∂ℋ/∂u = 0, such that

B′𝑇λλλ + 2D𝑇
𝑝 W𝑇 (C𝑝x + D𝑝u∗) = 0, (153)

or
u∗ = −1

2R−1B′𝑇λλλ − R−1Sx, R = D𝑇
𝑝 WD𝑝, S = D𝑇

𝑝 WC𝑝. (154)

Assume that
λλλ = 2Lx, (155)

where L is symmetric. Then

u∗ = −K∗x, K∗ = R−1B′𝑇 L + R−1S. (156)

Substituting (155) and (156) into (152) gives a matrix equation

LA + A𝑇 L − 2LB′K∗ + Q − (K∗)𝑇 S − S𝑇 K∗ + (K∗)𝑇 RK∗, (157)

where Q = C𝑇
𝑝 WC𝑝. This can be written

L(A − B′R−1S) + (A𝑇 − S𝑇 R−1B′𝑇 )L − LB′R−1B′𝑇 L + Q − S𝑇 R−1S = 0, (158)

to be solved for L, followed by K∗.

3.2 OpƟmal observer gains
The computation of a well-performing set of gains for the observer parallels the procedure of Section
3.1 for the controller gains. The approach is to assume that some noise w is applied to the disturbance
(wind and wave input) channels, and n to the measurement channels, and to tune the noise levels
until a desired performance is obtained. The formal derivation (Athans and Tse 1967) involves the
complication of continuous-time white noise; yet this formalism is not helpful in our case, where we
have no way to characterize the “real” measurement noise n. It is simpler to take a step-function
approach to the performance criteria, similar to the one in Section 3.1.

Consider the generic observer structure

𝑑x∗

𝑑𝑡 = Ax∗ + Bu + G(y − y∗), y∗ = Cx∗ + Du. (159)

Now, we can if desired assume something about the control signal u, whether a profile in time or a
control law. If we assume a control law like Kx∗, or if we assume u = 0, the form of the equations is
the same. Let us take advantage of the separation principle and tune the observer in the absence of a
control signal. Then

𝑑x∗

𝑑𝑡 = Ax∗ + Gεεε, εεε = y − y∗, y∗ = Cx∗. (160)

We now consider the following scenario. The observer (160) is at equilibrium, with the measurement
taking some value y. At time 𝑡, the measurement drops to zero. This perturbation could be the result
of an actual change in the state of the plant, in which case we would like the observed state x∗ to
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respond as quickly as possible; or it might be due to noise in the measurement signal, in which case we
do not want x∗ to respond. We have, in a sense, a belief state about the signal and noise probabilities.
If the measurement signal is noise, then we want to penalize εεε; if the measurement signal is real, then
we want to penalize x∗. A quadratic cost function could then look like

Π = ∫
∞

𝑡
p𝑇 Wp 𝑑𝜏 = ∫

∞

𝑡
w𝑇 (pp𝑇 )w 𝑑𝜏, p = Cpx(𝜏) + D𝑝εεε(𝜏). (161)

Clearly (160) and (161) are akin to (149) and (150). The solution, electing to have no cross-terms like
𝑥𝑖𝜀𝑗 in the performance index, is

(G∗)𝑇 = R−1CL, (162)
LA𝑇 + AL − LC𝑇 R−1CL + Q = 0. (163)

3.3 Models of wind and wave processes
Simple models of environmental processes enable the controller to estimate and react to wind and
wave disturbances. The effective wind speed and integrated wave forces are each represented with a
magnitude and a direction. The wind tends to vary slowly, and is represented by a low-pass filter.
But there is also a significant component to the wind loads at the blade passing frequency 3𝑃 , and
the controller may benefit from knowing something about this effect; see Smilden et al. (2019), for
instance. The effective wind component at the blade passing frequency is represented as a band pass
filter. The wind model is then

𝑑
𝑑𝑡

⎡
⎢⎢
⎣

𝑉∞
𝜃𝑉
𝛹𝑉
𝑉3𝑃

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

−𝛼𝑉 0 0 0
0 −𝛼𝑉 0 0
0 0 0 1
0 0 −𝛼2

3𝑃 −2𝜁3𝑃 𝛼3𝑃

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑉∞
𝜃𝑉
𝛹𝑉
𝑉3𝑃

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝛼𝑉 0
0 𝛼𝑉
0 0

2𝜁3𝑃 𝛼3𝑃 0

⎤
⎥⎥
⎦

[𝑉 𝑒
∞

𝜃𝑒
𝑉

] , (164)

where the “e” superscript indicates an external input signal.
The wave forces tend to be sinusoidal, with one or two dominant frequency bands. The dominant

frequencies change slowly, and can be reliably measured and forecast, so it is assumed that these are
known; and for the present purposes it is sufficient to consider one dominant frequency. The amplitude
is therefore represented by a second-order band-pass filter, while the direction is considered constant,
giving a three-state model,

𝑑
𝑑𝑡

⎡⎢
⎣

𝛹𝑤
𝐹𝑤
𝜃𝑔

𝑤

⎤⎥
⎦

= ⎡⎢
⎣

0 1 0
−𝜔2

𝑤 −2𝜁𝑤𝜔𝑤 0
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝛹𝑤
𝐹𝑤
𝜃𝑔

𝑤

⎤⎥
⎦

. (165)

Following Fossen (1994), also Smilden (2019) we select 𝜁𝑤 = 0.1, and 𝜔𝑤 = 2𝜋/𝑇𝑝.
The amplitude and direction of the wind are linearized, in terms of available input variables, as

∆𝑉∞ = 𝑉0,𝑥

√𝑉 2
0,𝑥 + 𝑉 2

0,𝑥
∆𝑉𝑥 + 𝑉0,𝑦

√𝑉 2
0,𝑥 + 𝑉 2

0,𝑦
∆𝑉𝑦 (166)

and
∆𝜃𝑉 = −𝑉0,𝑦

𝑉 2
0,𝑥 + 𝑉 2

0,𝑦
∆𝑉𝑥 + 𝑉0,𝑥

𝑉 2
0,𝑥 + 𝑉 2

0,𝑦
∆𝑉𝑦. (167)

If we take things literally, these formulas do not apply for the waves, since the mean wave forces are
zero. Being practical, we assume that the direction is defined by a characteristic wave force amplitude
vector F0, such that

∆𝐹𝑤 = 𝐹0,𝑥

√𝐹 2
0,𝑥 + 𝐹 2

0,𝑦
∆𝐹𝑥 + 𝐹0,𝑦

√𝐹 2
0,𝑥 + 𝐹 2

0,𝑦
∆𝐹𝑦 (168)
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Figure 21: The definition of a local coordinate system in the foundation, with the 𝑋′ axis passing through a
spot at which a crack or other damage has been detected.

and
∆𝜃𝑤 = −𝐹0,𝑦

𝐹 2
0,𝑥 + 𝐹 2

0,𝑦
∆𝐹𝑥 + 𝐹0,𝑥

𝐹 2
0,𝑥 + 𝐹 2

0,𝑦
∆𝐹𝑦. (169)

4 AcƟve control of the direcƟonal response of a monopile foundaƟon
We have seen in Section 2.3.3 that when the ocean waves and wind are not aligned, the nacelle travels
in a pattern that fatigues the foundation around its circumference. It is of interest to know to what
extent the pattern of motion can be controlled, and how much actuator effort is needed to do so.

As a case for study, consider the following scenario. The nucleus of a crack has been discovered in
a monopile foundation – say, at a weld-line defect in a support fitting for the J tube through which
the electrical cable passes. The crack is not critical, but it is desired to prevent its growth. A proposal
is made to adjust the control of the wind turbine so as to limit the fluctuating stresses in the critical
location. The task is to design a control system that fulfills this objective. Is it practical? Can stresses
be reduced by a meaningful amount without unduly worsening the loading on other components?

The possible control actions and available sensors are given respectively in Tables I and II. This is
a multiple-input multiple-output control problem. It is complicated by the need to maintain maximum
power-point tracking (MPPT) control of the rotor speed. By setting up an appropriate performance
index, it is possible to achieve good performance, both in terms of MPPT and load rejection, from
the LQR framework.

4.1 Control objecƟves, performance metrics, and structure
The rotor speed control function of a typical wind turbine controller has two fundamentally different
control structures: one when operating so as to maximize the aerodynamic efficiency, and the other in
the presence of a command or constraint on the electric power. Under normal operation, the former
case occurs below the rated wind speed, and the latter above the rated wind speed. On occasion, a
lower (curtailed) power command is set by the plant operator, and in this case the transition between
control modes happens at a lower wind speed. In any case, the control-mode transition involves
inherently nonlinear saturation of control signals that cannot be handled by linear theory. To limit
the scope, we focus on variable-speed operation, below the transition wind speed; this regime is
especially interesting, because the tradeoff between energy production and loads is in the forefront.

Below the transition wind speed, the primary goal is to hold the tip-speed ratio at the aerodynamic
optimum 𝜆∗, at which the power coefficient obtains its maximum value 𝐶∗

𝑃 . This is accomplished by a
simple quadratic relationship between the generator torque and rotor speed, which is implemented in
an open-loop fashion, 𝑇𝑔 = 𝐾ΩΩ

2
, where Ω is a filtered measurement of the rotor speed. Experience
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shows that it is difficult to improve on this control strategy, when it comes to maximum power-point
tracking (MPPT). (Burton et al. 2001)

Since the rotor speed and electrical power must fluctuate with the wind, in order to track the
maximum power coefficient 𝐶∗

𝑃 , it is not desirable to penalize ∆Ω and ∆ ̂𝑃𝑒 independently in the
performance metric. Nor is it possible to determine the error with respect to the optimal tip-speed
ratio, since this requires knowledge of the effective wind speed. The best estimate of the effective wind
speed is obtained through measurement of the rotor speed, which means that the wind speed estimate
lags the rotor speed. In other words, the simple open-loop control 𝐾ΩΩ

2
is expected to respond more

quickly and effectively than any strategy based on estimating the wind speed, tip-speed ratio, and
optimal rotor speed.

Given the primacy of energy production in the economics of wind energy, we propose to design a
controller that does not disturb the 𝐾ΩΩ

2
control law, over its effective bandwidth. The requirement

that ∆𝑃𝑒 tracks (3𝐾ΩΩ
2)∆Ω, in the framework of LQR control with load-reducing functions, leads to

a control architecture as shown in Fig. 22. The observer consists of the nominal open-loop wind turbine
model, with states ξξξ∗, as well as observations of the wind speed 𝑉∞, wind direction 𝜃𝑉 , instantaneous
wave load amplitude 𝐹𝑤, and wave direction 𝜃𝑤. The observer is augmented with five integrators:
three on the measured blade pitch, one on the power-tracking error, and one on the yaw-tracking
error. The integrals of the tracking errors are necessary to ensure reliable tracking when there is
uncertainty in the system parameters; while the integrals of blade pitch (collective, cosine, and sine
MBC components) serve to drive these to zero at low frequencies, such that they do not interfere with
the rotor speed and MPPT control.

Using LQR synthesis, the control law is an outcome of the performance index; that is, the weights in
the performance index provide the “knobs” that can be used to tune the system behavior. Stated even
more strongly: the weights in the performance index dictate the structure of the resulting controller. As
such, the formulation of the performance index and its weights are central to the design; in particular,
the formulation must penalize any undesired behavior that may be influenced by the control actions,
or result from the control actions. We elect to define the performance index as

Π = ∫
𝑇

𝑡
p𝑇 Wp 𝑑𝜏, W = diag{w} p =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆𝜀𝑃
∆ ̇𝜀𝑃
∆𝛹𝑃
∆ ̇𝑃 𝑒
∆Ω̇

∆(v′
𝑛)𝑋

∆(v′
𝑛)𝑌

∆ ̇βββ
∆ΨΨΨ𝛽
∆𝜀𝜒
∆ ̇𝜀𝜒
∆𝛹𝜒
∆ ̂βββ
∆ ̂𝑃𝑒
∆�̂�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (170)

The performance index contains the following penalties:

1. Proportional, derivative, and integral penalties on 𝜀𝑃 = (3KΩΩ
2)∆Ω−∆𝑃 𝑒. The integral term

provides tracking at low frequencies, while the other terms are used to tweak the response in
respectively the mid- and high-frequency bands.
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Figure 22: A block diagram of a wind turbine controller based around a state observer. The observer is
augmented with observations of bulk environmental effects, and several integral states.
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2. A penalty on the rate-of-change of power, ̇𝑃 𝑒, can be used to deaden the response of electrical
power to high-frequency drivetrain vibrations.

3. A penalty on the rate-of-change of rotor speed, Ω̇, has the opposite effect, causing generator
power to be used actively to counter high-frequency drivetrain vibrations.

4. A penalty on the nacelle velocity, as measured by an inertial measurement unit, tends to cause
the controller to use pitch, yaw, and electrical power commands to counteract the nacelle mo-
tion. Over the frequency band of interest, the nacelle displacement is closely proportional to the
internal moments and stress in the foundation. The velocity provides a measure of the fluctu-
ations in displacement, which may be counteracted by the controller without penalizing steady
rotor thrust and energy production. The velocity is expressed in the “primed” coordinate system
(Fig. 21), where the 𝑋′ weighting is more severe than the 𝑌 ′ weighting.

5. A penalty on the blade pitch rate discourages the controller from calling for rapid pitch actions
that would be damaging to the actuators.

6. A penalty on the integral of blade pitch can be used to drive the pitch to zero at low frequencies,
such that it does not interfere with rotor speed and MPPT control.

7. Proportional, derivative, and integral penalties on the yaw error 𝜀𝜒 = 𝜃∗
𝑉 −𝜒 provide yaw control.

8. A penalty on the blade pitch command is required in order to solve for the optimal gains,
acting to limit the maximal control input. Penalties are defined in the multi-blade coordinate
frame: collective, cosine and sine components. Note that constant values of the cosine and sine
components imply sinusoidal pitch inputs at the 1P frequency.

9. Penalizing the electrical power command is required in order to solve for the optimal gains.

10. A penalty on the rotor yaw command is required in order to solve for the optimal gains.

The solution for the optimal gains proceeds by (158).

4.2 Design and tuning of the observer
The observer consists of a model of the plant, augmented with a highly simplified model of wind and
wave processes. It also has five additional states, three being the integrals of the collective, cosine,
and sine components of blade pitch; another the integral of the error in power with respect to the
maximum power-point tracking algorithm, and the fifth the integral of the yaw offset with respect
to the anemometer measurement. These integral states are used to obtain a control law with the
appropriate frequency weighting and tracking capability.

The state equations for the observer are

𝑑
𝑑𝑡

⎡
⎢⎢
⎣

ξξξ∗

V∗

F∗
𝑤

ψψψ

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

A𝜉 B𝑉 B𝐹 0
0 0 0 0
0 0 A𝐹 0

A𝜓 0 0 0

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

ξξξ∗

V∗

F∗
𝑤

ψψψ

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

B𝑢
0
0
0

⎤
⎥⎥
⎦

u +
⎡
⎢⎢
⎣

G𝜉
G𝑉
G𝐹
0

⎤
⎥⎥
⎦

(y − y∗) (171)

y∗ = [C𝜉 0 0 0]
⎡
⎢⎢
⎣

ξξξ∗

V∗

F∗
𝑤

ψψψ

⎤
⎥⎥
⎦

(172)
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with

V∗ = [𝑉 ∗
∞

𝜃∗
𝑉

] , F∗
𝑤 = ⎡⎢

⎣

𝛹𝑤
𝐹 ∗

𝑤
𝜃∗

𝑤

⎤⎥
⎦

, ψψψ = ⎡⎢
⎣

𝛹𝛽
𝛹𝑃
𝛹𝜒

⎤⎥
⎦

, (173)

and

A𝐹 = ⎡⎢
⎣

0 −1 0
−𝛼2

𝑤 −2𝜁𝑤𝛼𝑤 0
0 0 0

⎤⎥
⎦

, A𝜓 = ⎡⎢
⎣

c𝛽
𝐾ΩcΩ − c𝑃

c𝜃 − c𝜒

⎤⎥
⎦

. (174)

The questions to be answered are (1), which modes should be included in ξξξ∗? And (2), how should
we set the weights of the Q and R matrices from (163)? There is quite some freedom in how we could
approach the design of the observer, and to some extent the choice is philosophical. For instance, do
we want a minimum-state observer, or a minimum-effort observer (one that minimizes the designer’s
effort)? Do we insist that the observer states should be interpretable by a human, or may we use
system identification methods to generate matrices that to our unaided eye are just a collection of
numbers?

Let us take the tactic of designing a low-design-effort observer; in doing so, we should be prepared
that the observer will have more states than necessary. There are three arguments for doing things
in this way, none of which are absolutely compelling – other approaches could be just as effective;
see, for instance, Smilden (2019). In any case, the first argument is that the control architecture of
Fig. 22 is quite general; developing a minimum-effort observer around this architecture will allow us to
efficiently study different control objectives. The second argument is that, in evaluating the potential
for load-reducing control functions, we do not want the observer to be the primary limitation on the
performance; retaining more than the minimum system dynamics provides some margin of error here.
The third argument is that it is easier to come back later and reduce the number of states in a high-
order observer, than to try to add states to improve the performance of a minimal observer. When it
comes to human-interpretability, we shall start with a modal observer, whose states – in principle, at
least – can be understood; then, system identification and reduction can be done in a following step.18

The observer was generated by the following procedure:

1. The steady-state operating point of the wind turbine was computed by solving the nonlinear
equations, using a default nonlinear controller (Merz et al. 2019).

2. Using the state vector at the operating point, an open-loop model of the wind turbine was
generated. This included sensor dynamics (a bank of low-pass filters) and a lower-level generator
power tracking controller. The open-loop model had 296 states.

3. The eigenmodes of the open-loop model were computed.

4. Every control-to-sensor and disturbance-to-sensor transfer function was computed, with the
magnitudes listed in Table XIII. Significant transfer functions were flagged for further analysis,
while those near zero were neglected, such that they did not influence the choice of modes to
retain.

5. For every significant transfer function in Table XIII, the projections (17) were computed, giving
the contribution from each mode.19 These modal contributions were ranked in descending order,
and a sufficient number of modes retained such that the transfer functions were reproduced
within an accuracy of 5%.

18As recommended by Zhou et al. (1996) we delay reduction of the embedded model until the controller gains are
completely specified – and then apply model-reduction procedures on the complete controller.

19The imaginary component of (17) was also checked, to make sure that there was not a significant bias orthogonal to
the direction of the projection.
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6. (Optional): Modes with a natural frequency above 4 Hz were considered to be quasi-steady; the
modal matrices were partitioned into

[A𝑑𝑑 A𝑑𝑠
A𝑠𝑑 A𝑠𝑠

] , [B𝑑
B𝑠

] , [C𝑑 C𝑠] ;

then, solving for the quasi-steady states,

𝑑x𝑑
𝑑𝑡 = (A𝑑𝑑 − A𝑑𝑠A−1

𝑠𝑠 A𝑠𝑑)x𝑑 + (B𝑑 − A𝑑𝑠A−1
𝑠𝑠 B𝑠)u, (175)

y = (C𝑑 − C𝑠A−1
𝑠𝑠 A𝑠𝑑)x𝑑 − C𝑠A−1

𝑠𝑠 B𝑠u. (176)

7. The observer was augmented with states representing the environmental disturbances: V∗ and
F∗

𝑤 in (171). (The integrators ψψψ in Fig. 22 are relevant only for the control law, not the tuning
of the observer, and so these are neglected in the present development.)

Skipping Step (6), retaining the full set of dynamic modes, the resulting observer has 251 states: 244
open-loop modes and 7 environmental states.20

We turn now to the second major question, how to set the weights in the Q and R matrices. Since
“optimal” gains are obtained when Q represents the covariance of the state variables, it is expected
that a good tuning will result if we can approximate this covariance. For this purpose we pick one
or several frequencies that are expected to be in the range of the significant environmental effects
w, and then compute the matrix of transfer functions H = ∂x/∂w at these frequencies. Here the
chosen frequencies were 0.02 Hz, for low-frequency wind; 0.17 Hz, for ocean waves; 0.24 Hz, for tower
resonance; and 0.40 Hz, for the 3𝑃 blade passing frequency. Disturbances w were taken to be the
rotor-average wind speed, wind direction, rotor-wide cosine and sine (multi-blade coordinate) wind
components, waterline wave force, and wave direction: quantities that represent, in bulk, the primary
environmental loads during operation. The Q matrix was then chosen as

Q = ℜ{H diag[γγγ ∘ γγγ] H∗𝑇 }, (177)

with γγγ a vector of weights, containing the estimated variance of each component of w. After Q was
determined, the weights along the diagonal of the R matrix were tuned to give good performance;
Table XIV lists the observer weights. We judge the quality of an observer initially according to whether
the observer can drive the error y − y∗ to steady state faster than 0.5 s (bandwidth > 2 Hz), which
is several times faster than the expected control actions. Then the performance of the observer must
be verified in closed-loop operation.

The dynamics of the isolated observer are shown in Figs. 23 and 24. Figure 23 shows all 100
components of the ∂y∗/∂y transfer function. The sensor input y is that labeled by text on the plot,
while the output y∗ is coded by color. A striking feature of the observer is that it does not reproduce
the sensor signals in the steady state; that is, the error 𝜀𝜀𝜀𝑦 = y − y∗ does not go to zero, especially in
the case of the three blade pitch signals. To explain this fact, let us look at the error dynamics, which
are

∂𝜀𝜀𝜀𝑦
∂y = ∂y

∂y − ∂y∗

∂y = I𝑦 − C∂x∗

∂y . (178)

Now,
∂x∗

∂y = [𝑖𝜔I𝑥 − (A − GC)]−1G, (179)

so
∂𝜀𝜀𝜀𝑦
∂y = I𝑦 − C[𝑖𝜔I𝑥 − (A − GC)]−1G, (180)

20The number of states can be reduced by an order of magnitude by applying model-reduction techniques.
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Table XIII: Case 10-2-x: The magnitudes of control-to-sensor and disturbance-to-sensor transfer functions at
representative frequencies, these being the steady state (upper block), at 0.17 Hz (second block) at the peak
ocean wave frequency, at 0.24 Hz (third block) at the first tower resonant frequency, and at 0.40 Hz (lower
block) near the blade passing frequency.

Ω 𝛽∅ 𝛽𝑐 𝛽𝑠 𝜒 𝑃 𝑒 (𝑣𝑔
𝑛)𝑥 (𝑣𝑔

𝑛)𝑦 𝑉 𝜃𝑉
̂𝛽∅ 13.835 1.0094 0.0300 0.0090 0.0879 1.1707 0.5882 0.0498 0.0000 0.0000
̂𝛽𝑐 0.7833 0.0026 0.9646 0.2904 0.4146 0.0663 0.0314 0.0182 0.0000 0.0000
̂𝛽𝑠 0.1508 0.0004 0.2891 0.9862 0.1438 0.0128 0.0703 0.0136 0.0000 0.0000

�̂�𝑒 0.2510 0.0007 0.0005 0.0001 0.0015 0.9787 0.0098 0.0010 0.0000 0.0000
�̂� 0.3502 0.0137 0.0208 0.0088 0.9688 0.0296 0.0128 0.0422 0.0000 0.0000

𝑉∞ 0.6122 0.0017 0.0012 0.0004 0.0037 0.0518 0.0246 0.0022 0.9950 0.0000
𝜃𝑉 0.0508 0.0001 0.0001 0.0001 0.0010 0.0043 0.0035 0.0002 0.0000 0.9950
𝑉𝑐 0.0076 0.0000 0.0001 0.0000 0.0089 0.0006 0.0004 0.0002 0.0000 0.0000
𝑉𝑠 0.0060 0.0000 0.0000 0.0005 0.0014 0.0005 0.0015 0.0010 0.0000 0.0000
𝐹𝑤 0.0020 0.0000 0.0000 0.0000 0.0000 0.0002 0.0029 0.0017 0.0000 0.0000
𝜃𝑤 0.0015 0.0000 0.0000 0.0000 0.0000 0.0001 0.0017 0.0030 0.0000 0.0000

̂𝛽∅ 2.3065 1.0142 0.0135 0.0062 0.0296 0.9896 1.1521 0.0407 0.0000 0.0000
̂𝛽𝑐 0.0579 0.0008 0.9640 0.2912 0.4069 0.0248 0.1215 0.0603 0.0000 0.0000
̂𝛽𝑠 0.0242 0.0002 0.2893 0.9858 0.1410 0.0104 0.3521 0.0810 0.0000 0.0000

�̂�𝑒 0.0306 0.0001 0.0001 0.0001 0.0003 0.9859 0.0074 0.0021 0.0000 0.0000
�̂� 0.0892 0.0140 0.0220 0.0089 0.9918 0.0383 0.0320 0.1684 0.0000 0.0000

𝑉∞ 0.0802 0.0004 0.0004 0.0002 0.0005 0.0344 0.0309 0.0014 0.8944 0.0000
𝜃𝑉 0.0043 0.0000 0.0001 0.0001 0.0007 0.0019 0.0158 0.0009 0.0000 0.8944
𝑉𝑐 0.0003 0.0000 0.0001 0.0000 0.0088 0.0001 0.0013 0.0007 0.0000 0.0000
𝑉𝑠 0.0011 0.0000 0.0000 0.0005 0.0014 0.0005 0.0077 0.0050 0.0000 0.0000
𝐹𝑤 0.0013 0.0000 0.0000 0.0000 0.0000 0.0006 0.0151 0.0089 0.0000 0.0000
𝜃𝑤 0.0008 0.0000 0.0000 0.0000 0.0000 0.0003 0.0088 0.0155 0.0000 0.0000

̂𝛽∅ 0.0979 0.9961 0.0020 0.0104 0.0394 0.2546 32.294 9.6609 0.0000 0.0000
̂𝛽𝑐 0.2344 0.0219 0.9761 0.3018 0.1056 0.6097 6.7308 27.967 0.0000 0.0000
̂𝛽𝑠 0.3016 0.0163 0.3029 0.9797 0.0802 0.7845 9.7721 15.906 0.0000 0.0000

�̂�𝑒 0.0060 0.0001 0.0001 0.0000 0.0012 0.9679 0.0431 0.1131 0.0000 0.0000
�̂� 1.6404 0.1642 0.0412 0.0182 0.4868 4.2670 7.5112 161.67 0.0000 0.0000

𝑉∞ 0.0028 0.0001 0.0001 0.0003 0.0010 0.0072 0.7413 0.1240 0.3846 0.0000
𝜃𝑉 0.0079 0.0003 0.0003 0.0002 0.0018 0.0204 0.4283 0.3266 0.0000 0.3846
𝑉𝑐 0.0054 0.0005 0.0004 0.0000 0.0025 0.0140 0.0657 0.6057 0.0000 0.0000
𝑉𝑠 0.0062 0.0004 0.0002 0.0004 0.0032 0.0161 0.2152 0.3784 0.0000 0.0000
𝐹𝑤 0.0101 0.0005 0.0004 0.0000 0.0069 0.0263 0.4599 0.6738 0.0000 0.0000
𝜃𝑤 0.0130 0.0009 0.0005 0.0001 0.0104 0.0337 0.3110 1.0226 0.0000 0.0000

̂𝛽∅ 0.3413 1.0036 0.0185 0.0065 0.0508 1.8597 4.9712 1.1017 0.0000 0.0000
̂𝛽𝑐 0.0932 0.0044 0.9536 0.3222 0.2144 0.5078 1.1055 4.6642 0.0000 0.0000
̂𝛽𝑠 0.0464 0.0016 0.3161 0.9675 0.0858 0.2527 1.3333 2.0431 0.0000 0.0000

�̂�𝑒 0.0030 0.0000 0.0000 0.0001 0.0002 0.9341 0.0038 0.0068 0.0000 0.0000
�̂� 0.1383 0.0090 0.0199 0.0019 0.2797 0.7537 0.0818 5.9524 0.0000 0.0000

𝑉∞ 0.0094 0.0003 0.0004 0.0002 0.0002 0.0510 0.1105 0.0027 0.2425 0.0000
𝜃𝑉 0.0003 0.0000 0.0001 0.0002 0.0013 0.0019 0.0603 0.0274 0.0000 0.2425
𝑉𝑐 0.0018 0.0001 0.0002 0.0001 0.0041 0.0100 0.0100 0.0885 0.0000 0.0000
𝑉𝑠 0.0005 0.0000 0.0001 0.0005 0.0007 0.0025 0.0281 0.0278 0.0000 0.0000
𝐹𝑤 0.0015 0.0001 0.0001 0.0000 0.0006 0.0084 0.0892 0.0554 0.0000 0.0000
𝜃𝑤 0.0017 0.0001 0.0001 0.0000 0.0010 0.0091 0.0512 0.0895 0.0000 0.0000

PROJECT
TotalControl

REPORT NUMBER
D3.3

VERSION
1.0 57 of 81



TotalControl – Project no. 727680

Table XIV: Case 10-2-x: Final tuning of the state observer, in units of (rad, m, s, Mkg).

γγγ, disturbances R, sensors
𝑉∞ 1.00 Ω 0.0250
𝜃𝑉 0.10 𝛽∅ 0.0013
𝑉𝑐 1.00 𝛽𝑐 0.0013
𝑉𝑠 1.00 𝛽𝑠 0.0013

𝑉3𝑃 1.00 𝜒 0.0013
𝐹𝑤 1.00 𝑃 𝑒 0.0050
𝜃𝑤 0.10 (𝑣′

𝑛)𝑋 0.0130
(𝑣′

𝑛)𝑌 0.0130
𝑉 𝑎 0.5000
𝜃𝑎 0.0500

or at steady state,
∂𝜀𝜀𝜀𝑦
∂y = I𝑦 + C(A − GC)−1G. (181)

This does in fact go to zero if the gain G is large enough; but a large gain would imply perfect certainty
and high bandwidth for the sensor measurements. In fact, what Fig. 23 tells us is that, in the absence
of control commands, very little information is contained in the blade pitch measurements. These
could just as well be eliminated from the list of sensor inputs to the observer. The useful blade pitch
information comes from the pitch command itself, as is seen in Fig. 24, which shows the 50 ∂y∗/∂u
transfer functions.

4.3 Control acƟons and closed-loop dynamics
We select Case 10-2-30 from Table XI to investigate in some depth, before proceeding to a broader
survey of results in Section 4.4. Let the wind be aligned with the 𝑋𝑔 direction, and, following the load
case definition, the waves are then at 𝜃𝑤 = 30∘. Let the crack in the foundation, the location we are
trying to protect, be located at 𝜃′ = 60∘, between the 𝑋𝑔 and 𝑌 𝑔 axes (Fig. 21). At this point the goal
is to study the possibilities of directional load control, rather than a final tuning; so let us emphasize
the directionality by penalizing only nacelle motions in the 𝑋′ direction (alternating stresses on the
crack), with no penalty at all in the 𝑌 ′ direction.

The starting point is a basic rotor speed controller, Controller RSC, where the power command
tracks the 𝐾ΩΩ3 profile. This controller is obtained using the weights in the first column of Table
XV. Figures 25 and 26 summarize the dynamic response, showing the transfer functions from the
rotor-average wind speed and waterline wave force to the blade pitch, electric power, rotor speed, and
nacelle motion. Controller RSC has no blade pitch: the plot is scaled logarithmically, so the residual
values of pitch are small. The electrical power tracks the rotor speed according to the desired law, with
a roll-off frequency around 0.05 Hz consistent with the natural timescale of the rotor inertia at this
wind speed. No effort is made to damp the tower motions, so a severe resonant response is evident.
We are most concerned with the response in the 𝑋′ direction, which stresses the critical location on
the foundation; this is the set of bright blue curves. The peak at 0.24 Hz is associated with the tower
resonant frequency, and since the defect is located at 60∘, the 𝑋′ direction receives contributions from
both the fore-aft and side-to-side motion.

Having established the baseline performance, we now introduce control actions that are designed
to protect the critical location on the foundation. First, we allow use of the generator and collective
blade pitch. These actions interfere with the control of the rotor speed, and their use must be limited
to a frequency band not much below the first tower resonant frequency. A reasonable tuning is that of
Controller AD, in Table XV. A significant penalty is placed on on motion in the 𝑋′ direction. At the
same time, the penalty on the collective blade pitch command is reduced such that this can become
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Figure 23: Case 10-2-x: Transfer functions from y to y∗ for the observer of Table XIV. The 𝑋 and 𝑌 axes are
logarithmically scaled, the 𝑋 axis units are 𝑙𝑜𝑔10(Hz), and each plot is annotated with the input y variable.
Curves are color-coded according to the y∗ variable: Ω (black), 𝛽∅ (light red), 𝛽𝑐 (red), 𝛽𝑠 (dark red), 𝜒 (light
green), 𝑃𝑒 (dark green), (v𝑛)𝑋 (light blue), (v𝑛)𝑌 (dark blue), 𝑉∞ (dark gray), and 𝜃𝑉 (light gray).
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Figure 24: Case 10-2-x: Transfer functions from u to y∗ for the observer of Table XIV. See Fig. 23 for the
legend.
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Figure 25: Case 10-2-30, critical spot 60∘: Transfer functions from wind speed and wave load to blade pitch, for
Controllers RSC, AD, and IBP. The column at left shows magnitudes, and at right the phase angles, normalized
by 𝜋. Red: collective pitch; dark red: cosine pitch; orange: sine pitch. The 𝑋 axis scale is 𝑙𝑜𝑔10(𝐻𝑧). The
curves for the RSC controller are drawn in a darker shade; AD medium; and IBP lighter.
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Figure 26: Case 10-2-30, critical spot 60∘: Transfer functions from wind speed and wave load to electric power,
rotor speed, and nacelle velocity, for Controllers RSC, AD, and IBP. The column at left shows magnitudes, and
at right the phase angles, normalized by 𝜋. The curves for the RSC controller are drawn in a darker shade; AD
medium; and IBP lighter.
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Table XV: Case 10-2-30: Progressive tuning of the controller. RSC: baseline rotor speed/MPPT control, AD:
active tower damping with collective pitch, IBP: individual blade pitch

RSC AD IBP AD2 IBP2
𝜀𝑃 2 2 2 2 2

̇𝜀𝑃 0 0 0 0 0
𝛹𝑃 10 10 10 10 10
�̇�𝑒 0.5 0.5 0.5 0.5 0.5
�̇� 0 0 0 0 0

(v′
𝑛)𝑋 0 15 15 15 15

(v′
𝑛)𝑌 0 0 0 15 15

̇𝛽∅ 0 10 10 10 10
̇𝛽𝑐 0 0 10 0 10
̇𝛽𝑠 0 0 10 0 10

Ψ𝛽∅ 1 20 20 20 20
Ψ𝛽𝑐 0 0 1 0 1
Ψ𝛽𝑠 0 0 1 0 1
𝜀𝜒 0 0 0 0 0

̇𝜀𝜒 0 0 0 0 0
𝛹𝜒 0 0 0 0 0

̂𝛽∅ (big) 50 50 50 50
̂𝛽𝑐 (big) (big) 20 (big) 20
̂𝛽𝑠 (big) (big) 20 (big) 20

�̂�𝑒 1 1 1 1 1
�̂� (big) (big) (big) (big) (big)

active. Additional penalties are then placed on the collective pitch rate and pitch integral: the former,
to limit high-frequency actuation, and the latter, to avoid interfering with MPPT at low frequencies.

As seen in Fig. 25, Controller AD actively pitches the blades, with somewhat over 1∘ pitch amp-
litude per unit wind speed (m/s) or wave force (MN) amplitude, over a frequency band from the wave
frequency (0.17 Hz) to the 3𝑃 frequency (0.4 Hz). The result, referring to Fig. 26, is a reduction in
the tower motion over this frequency band; in particular, the resonant peak in the critical direction
is all but eliminated. An added benefit is the reduction of fluctuations in the rotor speed and electric
power. It is evident that the control of rotor speed and MPPT is not significantly degraded.

Controller IBP in Table XV represents a tuning that allows active use of individual blade pitch,
in addition to collective pitch. Note that the signals seen in Fig. 25 are modulations of individual
blade pitch at the given frequency – even constant IBP, at zero frequency, involves active pitching as
the blades rotate about the azimuth. It is interesting what the optimal control does: it modulates
the cosine and sine components at a relative phase offset of around 𝜋. This implies a sort of diagonal
motion of the rotor. Unfortunately, constraints on the time and scope of this report prevent a deep
investigation into the dynamics; this is flagged as a topic for future study. Suffice it to say that the
result of the individual blade pitch action is to squeeze a bit further reduction of motion in the 𝑋′

direction, at the cost of worsened resonance in the 𝑌 ′ direction: indeed, the controller is “steering”
the tower motions away from the critical location, which is the effect we wanted to achieve. That said,
in a practical sense, the minor gains (remember, this is a log scale) are sure to be more than offset by
the increase in the overall level of vibration. Indeed, time-domain plots of the nacelle response under
random 𝑉 and 𝐹𝑤 inputs, Fig. 27, bear this out.

It is emphasized that the poor performance of individual blade pitch control in Fig. 27 is an
artifact of the asymmetric penalties placed on the tower motion. When the tower motion is penalized
evenly, individual blade pitch control can help in rejecting tower side-to-side motions. Figure 28 shows
the response spectra of the controls and nacelle motion, using the turbulence model of Section 2.1.11,
when the tower motion is penalized evenly. Under this particular setting of weights in the performance
index, the controller prefers to use modulation of individual blade pitch, rather than generator torque,
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Figure 27: Case 10-2-30, critical spot 60∘: Time series of normalized nacelle displacements under stochastic 𝑉
and 𝐹𝑤 inputs, with energy uniformly distributed over frequencies between 0.05 and 0.50 Hz.

to reject tower side-to-side motions. Controller IBP2 is highly effective, virtually cancelling tower
motion (again, the scale in the plot is logarithmic) due to ocean waves and resonant vibrations, and
reducing to some extent the response to 3𝑃 thrust fluctuations.

4.4 Performance as a funcƟon of wave direcƟon
Figures 29 through 32 show the performance of Controller IBP as a function of the wave direction. It
can be discerned from these plots that the ocean waves are responsible for the majority of the tower
resonant oscillations; for instance, observe in Fig. 32, the light gray curves, that little blade pitch
action is needed to counter the resonant-frequency motion in the direction of the wind. In this case
the principle effect of the controller is to reject the 3𝑃 blade-passing frequency component of the rotor
thrust. Overall, there is indeed the obvious tradeoff between load reduction and pitch actuator usage,
and it could be beneficial, in the context of reducing actuator wear, to “de-tune” the degree of load
rejection away from the critical location. For comparison, Figure 33 shows the response spectra of
Controller IBP2, which attempts to reject all tower motions.

To summarize: it is indeed possible to design a controller that “steers” the motion of the nacelle
into one direction, and away from another. There may be a practical benefit in doing so, in terms of
reducing actuator wear. However, the potential benefit is most pronounced when the wind and waves
are orthogonal, which is not a common event. In the event that the difference in 𝑋′ and 𝑌 ′ motions
is extreme, the expected load reduction in the 𝑋′ direction might not be realizable. A more robust
and effective controller is obtained if there is no directional preference, and all motions of the tower
are rejected. Modulation of individual blade pitch provides a way to reduce tower motions without
sending power fluctuations into the grid (Table VII).

5 AcƟve load control of an idling wind turbine
When a wind turbine is idling in low winds, it loses much of the aerodynamic damping present during
normal operation. The support structure is then prone to resonant oscillations excited by ocean waves.
Despite the fact that the turbine is not generating power, it is conceivable to use active control to
damp these oscillations. Two possibilities present themselves. One is to yaw the rotor such that it faces
the incoming waves, and use the generator as a motor to spin up the rotor speed. The spinning rotor
would then provide some aerodynamic damping. Another possibility is to yaw the rotor orthogonal
to the waves, and use generator torque to oppose the “side-to-side” tower oscillations.

5.1 Aerodynamic damping control
Let the rotor be yawed such that it faces the direction from which the ocean waves approach; we
assume long-crested seas for this conceptual study. The rotor is given some speed, either trimming
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Figure 28: Case 10-2-30: Spectra of control actions and nacelle motions under realistic turbulent wind and
ocean wave loading. Note that the tower motions are here shown in the global coordinate system (𝑋 downwind,
𝑌 cross-wind). Light: Controller RSC; medium: Controller AD2; dark: Controller IBP2.
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Figure 29: Case 10-2-0, Controller IBP: Response spectra for the case where the wave and wind directions
are aligned. The shading of the curves indicates the location of the defect: light is 0∘ and dark is 90∘, with
increments of 30∘.
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Figure 30: Case 10-2-30, Controller IBP: Response spectra for the case where the wave direction is offset by
30∘. Light: defect is at 0∘; dark: defect is at 90∘.
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Figure 31: Case 10-2-60, Controller IBP: Response spectra for the case where the wave direction is offset by
60∘. Light: defect is at 0∘; dark: defect is at 90∘.
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Figure 32: Case 10-2-90, Controller IBP: Response spectra for the case where the wave and wind directions are
orthogonal. Light: defect is at 0∘; dark: defect is at 90∘.
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Figure 33: Case 10-2-30: Spectra of control actions and nacelle motions for Controller IBP2, under realistic
turbulent wind and ocean wave loading, for wave directions of 0∘ (lighter shade), 30∘, 60∘, and 90∘ (darker
shade).
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Table XVI: Case 2-3-0: Operating conditions selected for the investigation of active damping while idling.

Case 𝑉∞ Ω 𝛽∅
2-3-0-1 2 0.1 14.0∘

2-3-0-2 2 0.2 7.0∘

2-3-0-3 2 0.3 4.7∘

Table XVII: Case 2-3-0: Modal properties of tower resonance, with and without active damping.

Controller Case Fore-aft Side-to-side
𝑓 𝜁 𝑓 𝜁

RSC 2-3-0-1 0.242 0.012 0.226 0.026
RSC 2-3-0-2 0.242 0.020 0.228 0.035
RSC 2-3-0-3 0.242 0.027 0.229 0.041
AD 2-3-0-1 0.242 0.014 0.226 0.026
AD 2-3-0-2 0.242 0.040 0.228 0.035
AD 2-3-0-3 0.241 0.082 0.229 0.040

the blade pitch, if there is a bit of wind, or else using the generator as a motor. What rotor speed
should be chosen, and how effective is the blade pitch at damping the tower motions?

For this study we employ precisely the same control setup as in Section 4; the only change is the
operating state of the wind turbine. Table XVI lists the three operating conditions considered. These
were selected such that the rotor speed attained the desired value at a small margin above zero power.

Considering Case 2-3-0-2, where the rotor speed is 0.2 rad/s, transfer functions from wave load to
the relevant control and response variables are shown in Fig. 34. Two sets of transfer functions are
shown, comparing the baseline Controller RSC (Table XV) with Controller AD1. Engaging blade pitch
increases the damping at resonance; it also has an influence on the rotor speed. As a consequence,
the electric power fluctuations increase, particularly in the wave-frequency band.

Table XVII extends the comparison of Controllers RSC and AD to rotor speeds of 0.1 and 0.3
rad/s. It appears as though an idling speed between 0.2 and 0.3 rad/s allows the active damping
control to be fully effective. This can be seen at the lower left of Fig. 35: the resonant peak in Case
2-3-0-3 is mostly eliminated. The dashed curves in Fig. 35 are the integrals under the spectra, whose
final value is the variance. From this, we can discern that the standard deviation of blade pitch is
around 0.01 rad, or about 0.6∘.

5.2 Generator damping control
The effectiveness of the active damping strategy of Section 5.1 is a strong function of the rotor speed.
It is ineffective when the rotor is rotating slowly, below around 0.2 rad/s. Keeping the rotor spinning
at a high rate comes at a cost, if the winds are low and variable and the generator must be used as
a motor. An alternate strategy that is not so dependent on the rotor speed is to yaw the turbine
orthogonal to the prevailing wave direction, and apply some combination of individual blade pitch
and generator torque.

Simply opposing the nacelle velocity with a power command does not work. Such a scheme is
implemented by Controller GI1 (G for “generator”, I for “idling”) in Table XVIII. Table XIX shows
that the result is a decrease in damping, with respect to a baseline control strategy (RSI) without
active load control. The reason for the poor performance is visible in the transfer functions of Fig. 36,
where the phase of the electrical power is at 90∘ relative to the rotor speed. This implies that the
generator is dissipating little power, rather it is transferring the power back and forth to the rotor. A
successful active damping strategy, Controller GI2, adjusts the phase of the electrical power and speed
through the 𝛹𝑃 penalty. With this tuning, there is a component of the electrical power in-phase with
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Figure 34: Case 2-3-0-2: Transfer functions from wave load to blade pitch (upper row), electric power (middle
row), and nacelle velocities (lower row). The 𝑋 axes in this and subsequent figures are scaled linearly (not
logarithmically as in previous sections), and have units of Hz. Black curves: baseline case, Controller RSC
(blade pitch is zero in the upper plots). Red curves: Controller AD.
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Figure 35: Case 2-3-0: Spectra of nacelle 𝑋 displacement, for three rotor speeds, with and without active
damping control. The plot at lower right shows the spectra of collective blade pitch for the same three cases.
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Table XVIII: Case 2-3-90: Tuning of the controller for active damping with the generator, while idling. RSI:
rotor speed control, GI1: pure tower damping, GI2: tower damping with rotor speed control, ADI: active tower
damping using the generator and collective pitch, IBI: same as ADI, plus individual blade pitch.

RSI GI1 GI2 ADI IBI
𝜀𝑃 2 0.2 2 2 2

̇𝜀𝑃 0 0 0 0 0
𝛹𝑃 10 1 25 25 25

̇𝑃𝑒 0.5 0.5 0.5 0.5 0.5
�̇� 0 0 0 0 0

(v′
𝑛)𝑋 0 15 20 20 20

(v′
𝑛)𝑌 0 15 20 20 20

̇𝛽∅ 0 0 0 10 10
̇𝛽𝑐 0 0 0 0 10
̇𝛽𝑠 0 0 0 0 10

Ψ𝛽∅ 0 0 0 20 20
Ψ𝛽𝑐 0 0 0 0 1
Ψ𝛽𝑠 0 0 0 0 1
𝜀𝜒 0 0 0 0 0

̇𝜀𝜒 0 0 0 0 0
𝛹𝜒 0 0 0 0 0

̂𝛽∅ (big) (big) (big) 50 50
̂𝛽𝑐 (big) (big) (big) (big) 50
̂𝛽𝑠 (big) (big) (big) (big) 50

�̂�𝑒 1 1 1 1 1
�̂� (big) (big) (big) (big) (big)

Table XIX: Case 2-3-90: Modal properties of tower resonance, as a function of the active damping control
strategy. Here the target rotor speed was 0.15 rad/s, and the mean blade pitch was 14∘.

Controller Fore-aft Side-to-side
𝑓 𝜁 𝑓 𝜁

RSI 0.242 0.013 0.226 0.027
GI1 0.242 0.014 0.217 0.013
GI2 0.242 0.013 0.225 0.031
ADI 0.242 0.022 0.225 0.031
IBI 0.241 0.030 0.225 0.036

the speed: the generator is dissipating some of the rotor’s kinetic energy. There is also a component
in-phase with the tower side-to-side velocity, providing the desired damping.

Even at a low rotor speed of 0.15 rad/s, engaging blade pitch has some effect, as seen in the spectra
of nacelle displacements, Fig. 37. Individual blade pitch further reduces the side-to-side motion by a
small amount.

6 Robustness of the resulƟng controllers
The controllers of Sections 4 and 5 were designed using a model of the plant that was closely similar
to the nominal model – at least, in terms of the control-to-sensor and disturbance-to-sensor transfer
functions. In practice there will be unavoidable discrepancies between the embedded model in the
controller, and the actual wind turbine. A robust controller will be insensitive to these discrepancies.

There are a variety of types of modelling error, and a number of ways in which we can test and
evaluate robustness. (Stengel 1994, Zhou et al. 1996) Mathematical approaches to robustness place
much emphasis on stability, because it is a generic requirement for all systems and also comparatively
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Figure 36: Case 2-3-90: Transfer functions from wave load to rotor speed, electrical power, and nacelle motions,
comparing Controllers GI1 (darker curves) and GI2 (lighter curves).

Figure 37: Case 2-3-90: Spectra of nacelle displacements obtained with selected controllers from Table XVIII.
Gray: RSI. Black: GI2. Red: ADI. Blue: IBI. Dashed lines in the right-hand plot show the integrals, whose
terminal value is the variance 𝜎2.
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easy to evaluate. There are certain formal guarantees about stability margins obtained with LQR
control synthesis, but these are strictly valid only for the plant model with which the controller was
synthesized. Tests for stability, and to some extent performance, under perturbations in the system
parameters can be formulated in terms of singular values of closed-loop transfer functions. Stability
is a necessary condition for good performance; but it is neither sufficient nor conservative, from an
engineering standpoint, since the system is likely to exhibit poor performance well before becoming
unstable. For instance, engaging an active damping controller that increased the rate of fatigue would
be a colossal failure, even if the system remained stable and operational.

A crude but sure way to gauge the performance of the controller is to hook it up to a set of
representative system models and test it. Some of the most likely and significant ways in which a real
wind turbine could differ from the modelled version, in terms of the potential impact on the present
control algorithms, are

1. The foundation conditions: There is uncertainty in the mechanical properties of the seabed. Not
only is the monopile hammered into an uncertain substrate, but the properties change over time,
in particular due to seabed erosion, and working in response to tower displacements. This is
reflected in the natural frequency of the support structure.

2. Pitch actuator dynamics: Simple filters and spring-damper elements have been used to represent
the actuator dynamics, whereas the real actuators are electromechanical devices with many
subcomponents. In a real application the properties of the servos would be determined by
testing, and would therefore be known; but some allowance is needed for degradation under
long-term operation, or alterations as a result of maintenance.

3. Sensor degradation or failure: A sensor signal may accumulate a bias over time, or perhaps a
corroded connection or electromagnetic interference leads to unanticipated noise in the channel.

The aerodynamic surfaces of the blades may also degrade over time, particularly at the outboard
leading edge, which effects the effective lift and drag coefficients. This will impact performance, but
it is not something that can be remedied by control, and it is not expected to influence stability.

The controllers of Sections 4 and 5 are not complete: they are prototypes that are valid around
particular operating points.21 Our consideration of robustness is limited to the same, and should be
viewed as indicative. An evaluation over the full range of operation is outside the present scope. For
illustration of robustness, focus is placed on the foundation and pitch actuator characteristics, for
active load control during operation, using Controller IBP2 of Section 4.

Assuming that we have not been altogether too aggressive in setting the gains, we can expect
that the linear optimal control will be less sensitive to errors in system parameters than an equivalent
controller constructed from simple band-pass and notch filters. This was the conclusive finding of
Fleming et al. (2013), and also a rational outcome of the use of the system model itself as a filter.

Indeed, we find that the controller of Section 4 is not sensitive to errors in the foundation properties,
nor the pitch actuator dynamics. The foundation stiffness was perturbed by ±10%, giving the modal
properties listed in Table XX. These are significant changes, larger than would be expected from
normal processes of erosion or degradation of the foundation. Using the original controller, designed
for the original stiffness, the resulting performance is shown in Fig. 38. There is hardly any change;
the sensors detect the tower motion at its perturbed frequency, and the controller acts to compensate.
Similarly, Fig. 39 shows the case where the corner frequency of the low-pass filter representing the
limits of the pitch actuator was halved from 1 Hz to 0.5 Hz – that is, the characteristic response time
was slowed from 1 s to 2 s. The original controller performs well; it is robust to alterations in the
pitch actuator dynamics.

21To arrive at a complete controller would require additional control logic to schedule gains; transitions between
operating modes; possibly hysteretic exclusion zones to avoid key resonant frequencies; shut-down, startup, and safety
functions; and so forth.
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Table XX: Case 10-2-30: The influence of the foundation stiffness on the first resonant mode of the open-loop
turbine. The stiffness factor was applied to the bending stiffness of the foundation and tower.

Factor Fore-aft Side-to-side
𝑓 𝜁 𝑓 𝜁

0.9 0.234 0.082 0.229 0.032
1.0 0.243 0.080 0.236 0.035
1.1 0.252 0.075 0.246 0.038

Figure 38: Case 10-2-30: Control and response spectra, showing the influence of changing the foundation
stiffness, while keeping the original observer and controller gains. Black: original, blue: 90% stiffness, red:
110% stiffness.
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Figure 39: Case 10-2-30: The influence of the pitch actuator responsiveness on performance. Black: 𝛼𝛽 = 1 Hz.
Red: 𝛼𝛽 = 0.5 Hz.
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7 Conclusions
We have investigated a “top-down” strategy of control synthesis, and applied this to load-reducing
control functions for offshore wind turbines. The usual, bottom-up approach to model-based control
begins with a highly simplified physical model of the plant, the order of 10 state variables being typical
for wind turbine applications. By contrast, the top-down approach begins with a high-resolution model
of the plant, the one employed here having around 300 state variables.22

It was found that a top-down control design is workable, and useful for rapid prototyping of
offshore wind turbine controllers. It was not difficult to ensure controllability and observability, for
which modal analysis is the key; the algebraic Riccatti equation could be solved rapidly, even with
300 states; the resulting gain matrices could not be understood, but the performance could be quickly
evaluated using transfer functions and spectral analysis.

It is not claimed that it is necessary to begin with a high-resolution model; simple observer models
can result in good controllers, and are, naturally, simpler to work with. But by proceeding top-down we
gain some advantages. We can be certain – at least, more certain than with other approaches – that the
model includes the relevant dynamics. We can always reduce the order of the controller after synthesis,
and formally quantify how much accuracy has been lost, and where. More subtly, and interestingly,
there is the possibility that the synthesis of an optimal controller around a high-resolution model will
find an unexpected control action that can improve performance. We encountered an example of this
in Section 4, where the controller used modulation of individual blade pitch to augment load rejection
over the resonant- and wave-frequency bands. This was in no way designed into the approach; rather,
it was a natural outcome of the optimization. There exist many low-resolution control models that
would not have found this solution.

Directional fatigue control of offshore wind turbine foundations does not appear to be especially
promising, as better performance was obtained when rejecting loads omnidirectionally. There could be
niche cases where some advantage of directional control, like reduced actuator usage, might be realized.
We investigated the two bounding cases: full directional bias and no directional bias. It could be of
interest to look at some of the intermediate scenarios, and perhaps other wind-wave climates.

It is practical to actively damp the wave-induced response of an offshore wind turbine when idling.
Which strategy is preferred – yawing into the waves and using blade pitch, or yawing perpendicular to
the waves and using the generator – depends on how fast the rotor can be spun. This in turn depends
on the wind speed, its variability, and its direction relative to the waves. The best approach could be
to include both options in the wind turbine controller, and apply one, the other, or neither, as wind
and wave conditions dictate.
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