
   

 

   

 

 
 

 

Upgrade of Fuga 
 

 

 

 

 

Title (of deliverable): Upgrade of Fuga 

Deliverable no.: D1.7 
 

 

 

 

 

 

Delivery date: 12.09.2019 

Lead beneficiary: DTU 

Dissemination level: PU 

 

 

 

 

 

 

 

 

 

This project has received funding from the 

European Union’s Horizon 2020 Research and 

Innovation Programme under grant agreement No. 

727680 

Ref. Ares(2019)5741470 - 13/09/2019



  TotalControl - Project no. 727680 

2 

 

 

Author(s) information (alphabetical): 

Name Organisation Email 

Søren Ott 
Paul van der Laan 
Gunner Larsen 

DTU 

DTU 

DTU 

sqot@dtu.dk 

   

   

 

Acknowledgements/Contributions: 

Name Name Name 
   

   

 

Document information 
Version Date Description 

   

   Prepared by Reviewed by Approved by 
1 12.09.2019 Name Søren Ott  Gunner Chr. 

Larsen 

 

Definitions 
  

DWM Dynamic Wake Meandering 

WT Wind turbine 

WF Wind farm 

ABL Atmospheric boundary layer 

CFD Computational fluid mechanics 

RANS Reynolds averaged Navier Stokes 

LES Large eddy simulation 

  

  

 

  



  TotalControl - Project no. 727680 

3 

 

 

 

TABLE OF CONTENTS 
Executive summary ............................................................................................................................ 4 

Introduction ........................................................................................................................................ 4 

A short description of Fuga ................................................................................................................ 5 

2.1 Governing equations ............................................................................................................... 5 

2.2 Linearization ............................................................................................................................ 6 

Yawed wakes and linearization ....................................................................................................... 13 

A new linearization technique ......................................................................................................... 21 

References ....................................................................................................................................... 24 

 

  



  TotalControl - Project no. 727680 

4 

 

EXECUTIVE SUMMARY 
 

This report describes results from task 1.7 of the TotalControl project: ‘Upgrade of Fuga for yawed 

rotors and strongly stable stratification, and report with testing and validation results. The 

deliverable is referring to task 1.3.1. Measure of success: Accuracy in new regimes with same 

level as Fuga accuracy in standard regimes.’  

 

Fuga is a linearized model and the generalization to yawed cases is straight forward. It merely 

consists in solving the first order equations for the case of transverse forcing. However, the 

results are useless because there is almost no deflection of the resulting yawed wake, and the 

deflection was going in the wrong direction. An investigation using non-linear CFD was then 

conducted in order to find out what was going on. The setup is a single actuator disk in flat, 

homogeneous terrain. Everything was kept fixed except for the thrust coefficient 𝐶𝑇. The results 

show that the velocity deficit roughly scales with 𝐶𝑇 , thus explaining the relative success of 

linearized models. However, the left-right anti-symmetric part of the deficit profile, which is 

responsible for the wake deflection, did not scale with 𝐶𝑇 at all in the central part of the wake (it 

did in fact in the outskirts of the wake). We propose a solution to this dilemma which combines 

the linearization with a suitable coordinate transformation. It turns out that the first order 

equations expressed in the transformed coordinates have exactly the same form as before. The 

solution is therefore the same as before except that it refers to a transformed coordinate system, 

which can be chosen afterwards. The best choice is determined in such a way that the term 

𝑣 𝜕𝑢𝑖 𝜕𝑦⁄  appears when the first order equations are transformed back to the original 

coordinates.  

 

Due these unexpected difficulties, the main focus has been on reformulating the model so that 

it can deal with yaw effects. We demonstrate that the new strategy gives meaningful results for 

neutral stratification when compared with CFD model results. A quantitative comparison could, 

however, not be made because two different closures were used by for two models. Lately, Paul 

van der Laan has made it possible to use the Fuga closure with his CFD model, thus enabling a 

more quantitative analysis. There are still problems with strongly stable cases and work on 

improving the solver will continue. Finally, we are waiting for the experimental results to be 

generated within the TotalControl project for validation.    

INTRODUCTION 
 

The Fuga model [1, 2] is a linearized CFD flow model that calculates wake effects in wind farms. 

The present version works in homogeneous, flat terrain including a sea surface. Fuga is many 

orders of magnitude more cost efficient than the simple, non-linear closure model on which it is 

based (or any other non-linear CFD model for that matter). Even if the Annual Energy Production 

(AEP) is the main output, sensitivities with respect to layout design parameters (e.g. turbine 

positions) can also be made, using a method which is much faster than simple finite differencing. 

This feature facilitates the use of fast, gradient based algorithms for windfarm layout 

optimization. In the TotalControl project it is an objective to control yaw misalignment and power 

curtailment in order to maximize wind farm power production for given meteorological 

conditions. The main aim of the work presented here is to upgrade Fuga to incorporate yaw 

control.   
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The main aim of the work presented here is to upgrade Fuga for yaw control in order to make 

possible to estimate the feasibility of yaw control within the TotalControl project. Atmospheric 

stability is likely to be very important because it affects both small and large scales of the 

atmospheric turbulence. The enhanced small scale turbulence in unstable conditions speeds up 

the wake decay and broadens the wakes which should make yaw control less efficient in terms 

of optimization of power output. At the same time the enhanced large scale turbulence causes 

wake meandering and increased uncertainty of predictions of ‘the’ wind speed and direction, 

which needs to be made at a distance from the measurement point (e.g. a met mast) and ahead 

in time. It therefore seems likely that yaw control makes more harm than good if the atmospheric 

conditions are too much on the unstable side. In stable conditions, on the other hand, the wind 

field and hence the wakes tend to be more regular and predictable and the prospects of yaw 

control seem to be much better. Fuga does take stability into account, but there has been 

numerical problems for the solver in stable conditions. Making an attempt to overcome these 

difficulties is the secondary aim of this work. Including (strongly) stable conditions is necessary 

for the study of yaw control in the situations where is looks most promising, and the fact that the 

present solver fails for stable conditions is a major obstacle for progress.    

A SHORT DESCRIPTION OF FUGA 

2.1 GOVERNING EQUATIONS 

The starting point for Fuga is a full, non-linear CFD model. Any CFD model, which is based on the 

Boussinesq approximation and an eddy viscosity closure, can be used. In such a setting the 

Reynolds averaged Navier-Stokes equation may look like this: 

𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗
 𝐾 (

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) −

𝜕𝑃

𝜕𝑥𝑖
+ 𝑓𝑖 (1) 

where 𝑈𝑖 is the mean velocity, 𝑃 is the pressure divided by the (constant) density, 𝐾 is the eddy 

viscosity (molecular viscosity is neglected), and 𝑓𝑖  is the external forcing from one or more 

actuator discs representing the drag forces exerted by turbines. For the sake of simplicity the 

buoyancy term −𝑔 𝜃 𝛿3𝑖/𝑇 and the corresponding transport equation for potential temperature 

𝜃 have been neglected. This means that standing gravity waves are not supported, but turbulent 

mixing can still be affected by stability through the eddy viscosity.   

 

Incompressibility yields the continuity  

𝜕𝑈𝑖
𝜕𝑥𝑖

= 0 

 

(2) 

Boundary conditions are just as important as governing equations. Assuming a ‘lid driven’ flow 

with an imposed velocity 𝑈𝑖
lid at the top of the boundary layer and rough lower boundary, the 

boundary conditions are 

 𝑈𝑖(𝑧0) = 0 

𝑈𝑖(𝑧𝑖) = 𝑈𝑖
lid 

 

(3) 

where 𝑧0  is the roughness length and 𝑧𝑖  is the boundary layer height (the 𝑖  in 𝑧𝑖  stands for 

capping 𝑖nversion, not component index). Specification of the momentum flux 𝑢∗ 
2  at the lid is an 

alternative, but in practice the choice is not so important.  
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Finally, the eddy viscosity 𝐾 has to be determined by means of a closure scheme.  In report1 

three different closures were studied for neutral conditions: the standard 𝑘-𝜖 model, the mixing 

length closure and the ‘simple’ closure, where 𝐾 =  𝜅 𝑢∗ 𝑧. Somewhat surprisingly, the simple 

closure performed better than the other two and has been used subsequently. The simple 

closure totally neglects any feed-back mechanism that modifies turbulent mixing (of momentum) 

in the presence of wakes. The two other models are supposed to do that, but not with much 

success, apparently. At the time of this investigation it was realized that the (non-linear) standard 

𝑘-𝜖 model yields pure results for wakes, and a modified 𝑘-𝜖  model (i.e. Paul’s model [3]) is 

necessary in order to beat the performance of the simple model. It is therefore possible that a 

better choice than the simple closure exists. Investigating this is, however, outside the scope of 

the present work. In Fuga the simple closure is extended to non-neutral conditions by means of 

Monin-Obukhov theory setting  

 

𝐾 =  
𝜅 𝑢∗ 𝑧

𝜑𝑚(𝑧/𝐿)
 

 

(4) 

where 𝐿 is the Monin-Obukhov length and 𝜑𝑚 is the profile function, 

 

  

2.2 LINEARIZATION 

 

The linearization is a result of a perturbation expansion using the drag force as the perturbation. 

There is no unique way of doing this, so we shall first concentrate on how this has been done in 

Fuga. In the present version of Fuga the drag force 𝑓𝑖 is formally replaced by 𝑠 𝑓𝑖 where 𝑠 is a 

‘small’ parameter. The solution then depends on 𝑠, and we may express this dependence by 

writing 𝑈𝑖 and 𝑃 as Taylor series: 

 

𝑈𝑖 = 𝑈𝑖
0 + 𝑠 𝑢𝑖

1 + 𝑠2 𝑢𝑖
2 + 𝑠3 𝑢𝑖

3 +⋯ 

                                       𝑃 = 𝑃0 + 𝑠 𝑝1 + 𝑠2 𝑝2 + 𝑠3 𝑝3+… 

 

(3) 

Inserting this into (1) and (2), the 𝑛th order equations are obtained by applying 
𝜕𝑛

𝜕𝑠𝑛
 on both sides 

and setting 𝑠 = 0. In other words, the 𝑛th  order equation is obtained by balancing all terms 

proportional to 𝑠𝑛.  Thus the 0th order equations are 

  

𝑈𝑗
0 𝜕𝑈𝑖

0

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
 𝐾 (

𝜕𝑈𝑖
0

𝜕𝑥𝑗
+
𝜕𝑈𝑗

0

𝜕𝑥𝑖
) −

𝜕𝑃0

𝜕𝑥𝑖
 

𝜕𝑈𝑖
0

𝜕𝑥𝑖
= 0 

𝑈𝑖
0(𝑧0) = 0 

 𝑈𝑖
0(𝑧𝑖) = 𝑈𝑖

lid 

(4) 
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This is just the same as (1), (2) and (3) without any external forcing. Assuming that the mean 

pressure gradient vanishes we can set 𝑃0=0, and the solution is the usual Monin-Obukhov 

velocity profile (the familiar logarithmic profile for neutral conditions).  

 

The first order equations are 

  

𝑈0
𝜕𝑢𝑖

1

𝜕𝑥
+ 𝑤1

𝜕𝑈0

𝜕𝑧
𝛿𝑖1 =

𝜕

𝜕𝑥𝑗
 𝐾 (

𝜕𝑢𝑖
1

𝜕𝑥𝑗
+
𝜕𝑢𝑗

1

𝜕𝑥𝑖
) −

𝜕𝑝1

𝜕𝑥𝑖
+ 𝑓𝑖 

𝜕𝑢𝑖
1

𝜕𝑥𝑖
= 0 

      𝑢𝑖
1(𝑧0) = 0 

𝑢𝑖
1(𝑧𝑖) = 0 

 

(5) 

where we have assumed the approaching flow is along the 𝑥-axis so that we have set 𝑈𝑖
0 =

𝛿𝑖1𝑈
0(𝑧).  

 

The first order equations are most conveniently solved in a mixed-spectral setting. This means 

that the equations are Fourier transformed in the horizontal 𝑥 and 𝑦 coordinates, so that 

solutions depend on 𝑧 and a 2D wave vector 𝒌 = (𝑘 cos𝛽, 𝑘 sin𝛽). The mixed spectral 

equations are ordinary differential equations in the 𝑧 variable.   

 

Note that there is one separate set of equations for each 𝒌 and no coupling between equations 

for different 𝒌s.  This decoupling is the big advantage of the mixed-spectral formulation. 

Instead of having coupled equations for millions of variables, four for each grid point, the 

mixed-spectral setting only has four equations and four variables.    

 

In order to make the notation tidy we will write 𝑢, 𝑣, 𝑤 and 𝑝 rather than 𝑢1
1, 𝑢2

1, 𝑢3
1 and 𝑝1 in 

the following. 

 

Finally we use (6d) to eliminate derivatives of 𝑤 in (6c) and introduce two new variables 𝑢′ and 

𝑣′ that enable us to write the equations as 6 first order equations, viz 

 

𝜕𝑢

𝜕𝑧
= 𝑢′ (7a) 

 

𝜕𝑢′

𝜕𝑧
= (𝑘2 +

𝑈0𝑖 𝑘 cos𝛽

𝐾
)𝑢 −

1

𝐾

𝜕𝐾

𝜕𝑧
𝑢′ + (

1

𝐾

𝜕𝑈0

𝜕𝑧
−
𝜕𝐾

𝜕𝑧
 
𝑖 𝑘 cos 𝛽

𝐾
)𝑤

+
 𝑖 𝑘 cos 𝛽

𝐾
𝑝 −

𝑓1
𝐾

 

 

(7b) 

𝜕𝑣

𝜕𝑧
= 𝑣′ (7c) 

 

 
(7d) 
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𝜕𝑣′

𝜕𝑧
= (𝑘2 +

𝑈0𝑖 𝑘 cos𝛽

𝐾
)𝑣 −

1

𝐾

𝜕𝐾

𝜕𝑧
𝑣′ −

𝜕𝐾

𝜕𝑧
 
𝑖 𝑘 sin 𝛽

𝐾
𝑤 +

 𝑖 𝑘 sin 𝛽

𝐾
𝑝 −

𝑓2
𝐾

 

  
𝜕𝑤

𝜕𝑧
= −𝑖 𝑘 cos𝛽 𝑢 − 𝑖 𝑘 sin𝛽 𝑣 

 

(7e) 

𝜕𝑝

𝜕𝑧
= −2

𝜕𝐾

𝜕𝑧
 𝑖𝑘 cos𝛽 𝑢 − 𝐾𝑖𝑘 cos𝛽 𝑢′ − 2

𝜕𝐾

𝜕𝑧
𝑖𝑘 sin𝛽 𝑣 − 𝐾𝑖𝑘 sin𝛽 𝑣′

− (𝑈0𝑖𝑘 cos𝛽 + 𝑘2𝐾)𝑤 + 𝑓3 
 

(7f) 

𝑢(𝑧0) = 0, 𝑣(𝑧0) = 0, 𝑤(𝑧0) = 0, 𝑢(𝑧𝑖) = 0, 𝑣(𝑧𝑖) = 0, 𝑤(𝑧𝑖) = 0  (7g) 

Setting 𝑋𝑖 = (𝑢, 𝑢′, 𝑣, 𝑣′, 𝑤, 𝑝) and 𝐹𝑖 = (0, 𝑓1, 0, 𝑓2, 𝑓3, 0), the equations can be written in the 

form 

 
 

𝜕𝑋𝑖
𝜕𝑧

= 𝐴𝑖𝑗𝑋𝑗 + 𝐹𝑖 

 

(8) 

where 𝐴𝑖𝑗  and 𝐹𝑖  are functions of 𝑧 . Equations (7a-g) and (8) should be written in non-

dimensional form. All velocities and 𝐾𝑖 should scale with 𝑢∗, pressure should scale with 𝑢∗
2, and 

𝑘𝑧 should be used instead of 𝑧 as independent variable. The non-dimensional solutions then 

become functions of 𝑘𝑧 and three parameters: 𝑧0, the angle 𝛽 between the wave vector and the 

wind direction, and a stability parameter 𝜁0 ≡ 𝑧0/𝐿, say. Note that there is no additional, explicit 

dependence on 𝑘 or 𝑢∗ or 𝑧0, so we solve the equations without actually knowing 𝑘, 𝑢∗ and 𝑧0. 

We will not rewrite the equations in non-dimensional form and invent new notation etc. Instead 

we keep the dimensional notation and note that the non-dimensional form is obtained very easily 

by replacing 𝑘 with 𝑘𝑧 and setting 𝑘 =1 and 𝑢∗=1. 

 

2.3 THE SOLVER 

 
It is a set of linear equations with boundary conditions both at 𝑧 = 𝑧0 and  𝑧 = 𝑧𝑖. It may sound 

as an easy problem, but it is not. The NDSolve routine in Mathematica attacks the problem with 

the chasing method. This method first transforms boundary conditions at one boundary to an 

equivalent boundary conditions at the other boundary. With all boundary conditions at the same 

boundary we have an initial value problem which can be integrated using e.g. Runge-Kutta. The 

transformation works like this: we have a boundary condition at 𝑧1 

 

𝑦𝑖
1 𝑋𝑖(𝑧1) = 𝑏1 

 
(9) 

which should be equivalent to 
 

𝑦(𝑧) 𝑋𝑖(𝑧) = 𝑏(𝑧) (10) 

at some other point . The trick is first to solve the following initial value problem 

 

𝜕𝑦𝑗

𝜕𝑧
= −𝑦𝑖𝐴𝑖𝑗 (11) 
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𝑦𝑖(𝑧1) = 𝑦𝑖
1  

 
Then  

𝜕𝑦𝑖𝑋𝑖
𝜕𝑧

= −𝑦𝑖𝐴𝑖𝑗𝑋𝑗 + 𝑦𝑖𝐴𝑖𝑗𝑋𝑗 + 𝑦𝑖𝐹𝑖 = 𝑦𝑖𝐹𝑖 (12) 

 

and therefore 

 

𝑏(𝑧) = 𝑏1 +∫ 𝑦𝑖(𝑧
′)𝐹𝑖(𝑧

′)𝑑𝑧′
𝑧

𝑧1

 

 

(13) 

Note that we don’t have to know 𝑋𝑖  to find 𝑦𝑖  and 𝑏. In this way the three upper boundary 

conditions can be transformed into lower boundary conditions, say, and the problem can be 

integrated up from 𝑧0 to 𝑧𝑖 as an ordinary initial value problem.  

 

Unfortunately the method often fails because the determination of the initial value turns out to 

be numerically ill-conditioned, and the integration cannot start. Even if the integration sometimes 

does start, there is no guarantee that numerical solution ends up obeying the original boundary 

conditions at the other end as it is supposed to. The problem is numerical precision. As the 

transportation from one end to the other progresses, the three boundary conditions tend to look 

more and more alike and extremely high numerical precision is needed to tell them apart. 

Investigations using Mathematica indicate that as much as 60 significant digits are sometimes 

needed. This is about twice as many as are available using quadruple precision floating-point 

reals.  

 

A modified version of the chasing method was therefore used. The idea is to reformulate the 

transported conditions every now and then in order to separate them before running out of 

numerical precision. The integration start from below at 𝑧 = 𝑧0 , where we have the three 

boundary conditions are 𝑋1 = 𝑋3 = 𝑋5 = 0 (i.e. 𝑢 = 𝑣 = 𝑤 = 0), each with a corresponding 𝑦𝑖 
and 𝑏 (that happen to be =0). It is practical to use the 𝑦s as the first (upper) three rows in a 6x6 

matrix 𝑌𝑖𝑗(𝑧0). The three lower rows represent three additional conditions which are unknown at 

this point. We choose to define them in such a way as to make 𝑌𝑖𝑗(𝑧0) unitary, e.g. 

 

𝑌𝑖𝑗(𝑧0) =

{
 
 

 
 
 1
 0
 0
 0
 0
 0

   0
   0
   0
   1
   0
   0

   0
  1
   0
   0
   0
   0

   0
   0
   0
   0
   1
   0

   0
   0
   1
   0
   0
   0

   0
   0
   0
   0
   0
   1

 

}
 
 

 
 

  

 

(14) 

The 𝑏s for the three lower rows are unknown, but according (13) to we can use 𝑏=0 as starting 

value and add the actual starting value later.  

   

We now rewrite (11) in matrix form (which does not mix the rows of  𝑌𝑖𝑗) 

 
𝜕𝑌𝑖𝑗

𝜕𝑧
=  −𝑌𝑖𝑘𝐴𝑘𝑗 (15) 
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𝜕𝑏𝑖
𝜕𝑧

=  𝑌𝑖𝑗 𝐹𝑗 

𝑏𝑗(𝑧0) = 0 

 

 

The forcing 𝐹𝑗  can be divided into three components: Longitudinal acting against the approacing 

wind direction, transverse forcing (relevant for yawed rotors) and vertical forcing (not actually 

used here). It is an advantage to make three separate solutions which later can be scaled and 

superimposed to give the full forcing. There will therefore be a separate solution for each of the 

three choices  

 

𝐹𝑗(𝑧) = 𝑓1(𝑧) 𝛿𝑗2 

𝐹𝑗(𝑧) = 𝑓2(𝑧) 𝛿𝑗4 

𝐹𝑗(𝑧) = 𝑓3(𝑧) 𝛿𝑗5 

(16) 

 

Thus there will be three sets of 𝑏𝑖  and 𝑌𝑖𝑗  for the three types. In principle 𝑓𝑗(𝑧) can be any 

function of 𝑧, but we will restrick 𝑓𝑗(𝑧) to be piecewize linear. To this end we define a number of 

levels 

 

𝑧𝑗 = 𝑧0 𝑒
𝑗 𝑑𝑠 (17) 

 

between which 𝑓𝑗(𝑧) is approximated by a linear function. The value 𝑑𝑠 = 0.05 is small enough 

to give a good approximations.  Integrating (13) from one level to the next we note that 

 

 

 
 

 

𝑏𝑖(𝑧𝑗) = 𝑏𝑖(𝑧𝑗−1) + Δ𝑏𝑖 

Δ𝑏𝑖 = ∫ 𝑌𝑖𝑘 (𝑧)𝐹𝑘(𝑧) 𝑑𝑧

𝑧𝑗+1

𝑧𝑗

 

   

(18) 

where the forcing is linear in 𝑧. We therefore only need to calculate the integral for the special 

cases 𝑓𝑗(𝑧)=1and 𝑓𝑗(𝑧)=z and store the six results in a look-up table. The solution for more any 

linear 𝑓𝑗(𝑧) can then be obtained as a linear combination of the spatial cases. 𝑌𝑖𝑗 (𝑧𝑗), which 

does not depend on the forcing, is also tabulated.  

 

These tables can be used to find 𝑋𝑖 for a particular, piecewise forcing in the following way. First 

the forcing 𝑓𝑗(𝑧) is worked out for the Fourier component in question. Using the Δ𝑏 table we then 

find  𝑏𝑖(𝑧𝑗) − 𝑏𝑖(𝑧0) for all levels up to 𝑧𝑖 . Here we know that 𝑏1(𝑧0) = 𝑏2(𝑧0) = 𝑏3(𝑧0) =0, 

hence 𝑏1(𝑧𝑗) , 𝑏2(𝑧𝑗)  and 𝑏3(𝑧𝑗) are all known,  but 𝑏4(𝑧0) , 𝑏5(𝑧0)  and 𝑏6(𝑧0) are unknow.  

They can, however, be determined  because at the upper boundary we know six conditions:  

𝑌𝑖𝑗𝑋𝑗 = 𝑏𝑖 for 𝑖 = 1, 2 and 3 plus the three upper boundary conditions. With six conditions we 

have enough information to determine the 𝑋𝑗  and the remaining  𝑏𝑖 = 𝑌𝑖𝑗𝑋𝑗  and hence also 

𝑏𝑖(𝑧0) for 𝑖 = 4, 5 and 6. Now having six conditions at every level, all 𝑋𝑗(𝑧𝑗) can be calculated.  
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In the original chasing algorithm 𝑋𝑗(𝑧) is found by solving the initial value problem starting from 

𝑋𝑗(𝑧𝑖) and integrating downwards. This is not a good idea here because particular solutions 

increase or decrease roughly exponentially and a tiny bit of numerical noise make the solutions 

go berserk so there is chance that we end up with the original lower boundary conditions 𝑢(𝑧0) =
𝑣(𝑧0) = 𝑤(𝑧0) = 0 . The proposed solutions method is better because the lower boundary 

conditions will automatically be fulfilled.  

 

That should work in principle, but, unfortunately, it does not work at all in practice. What happens 

is that the matrix 𝑌𝑖𝑗 becomes ill-conditioned (having a mixture of very small and very large 

eigenvalues) and cannot be inverted without major loss of numerical precision. However, we can 

avoid this if the condition 𝑌𝑖𝑗𝑋𝑗 = 𝑏𝑖  at each level is modified.  Another, equivalent condition 

�̃�𝑖𝑗𝑋𝑗 = �̃�𝑖 where �̃�𝑖𝑘 = 𝑀𝑖𝑗𝑌𝑗𝑘 and �̃�𝑖 = 𝑀𝑖𝑗𝑏𝑗. The matrix 𝑀𝑖𝑗 should be regular, it should not mix 

the three upper rows with the lower three (i.e. 𝑀𝑖𝑗 = 0 for 𝑖 ≤ 3 and 𝑗 > 3), and �̃�𝑖𝑗 should be 

well-conditioned. This is achieved by requiring that 𝑀𝑖𝑗 to be lower triangular  (𝑀𝑖𝑗 = 0 for 𝑖 ≤ 𝑗) 

and �̃�𝑖𝑗 to be unitary. Unitary matrices are as well-conditioned as they can be, and they are also 

extremely easy to invert (the same goes for triangular matrices).The inverse of a lower triangular 

matrix is also lower triangular, so the procedure is to write 𝑌𝑖𝑗 as a product of a lower triangular 

matrix (the inverse of 𝑀𝑖𝑗 ) and a unitary matrix �̃�𝑖𝑗 . The so-called QR decomposition, which 

essentially is a Gram-Schmidt orthonormalization, can be used. The integration of 𝑌𝑖𝑗(𝑧) then 

uses the well-conditioned �̃�𝑖𝑗  as start value andchances are that 𝑌𝑖𝑗(𝑧) s remains reasonably 

well-conditioned up to the next level, where the next decomposition takes place. Otherwise the 

step is too large and must be divided into smaller steps with QR decompositions in between. The 

look-up tables contain �̃�𝑖 , �̃�𝑖𝑗 and 𝑀𝑖𝑗  for each level. We need to store 𝑀𝑖𝑗  because of (18) is 

replaced with 

 

�̃�𝑖(𝑧𝑗) = 𝑀𝑖𝑘𝑏𝑘(𝑧𝑗−1) + Δ�̃�𝑖 

Δ�̃�𝑖 = 𝑀𝑖𝑝 ∫ 𝑌𝑝𝑘 (𝑧)𝐹𝑘(𝑧) 𝑑𝑧

𝑧𝑗+1

𝑧𝑗

 

 

(19) 

The modified chasing algorithm outlined above seems to work, even if there are some issues. It 

gets rid of ill-conditioned matrices, and produces wakes that look ok. It is definitely doing better 

than the state-of-the-art solver NDSolve in Mathematica, which simply fails, but it is difficult to 

say how accurate the solutions are because we lack an even better solver to compare with. 

Spurious behaviour has been observed, however, as can be seen in fig. 1. The figure shows the 

park efficiency for a given wind climate assuming different values of the stability parameter 𝜁0 =
𝑧0/𝐿  corresponding to stabilities ranging from very unstable to very stable conditions. The 

efficiency decreases with increasing  𝜁0 as expected, but only up to 𝜁0 ≈ 3 × 10
−7  where it 

begins to increase. There is no reason to believe that the rise at strong stability is a correct 

behavior.  
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Fig 1. Top: Park efficiency as a function of  ζ0 = 𝑧0/𝐿 using the present solver. The rise in the 

stable side is spurious. 

 

It is difficult to pinpoint exactly what goes wrong. Diffusion tends to wipe out numerical noise and 

inaccuracy, so it is perhaps not surprising that things go wrong in the stable end where 𝐾 is 

smallest. When the eddy viscosity is small, the spurious forces resulting from numerical 

inaccuracies can more easily perturb the solution.     

 

Various attempts have been made to improve the solver further, most of which led to 

catastrophic results. The best bit is the following.  

 

Major simplifications occur 𝐾 in equations (7a-f) if we assume that 𝑈0  and 𝐾 are constants. 

Discarding all terms involving derivatives of 𝑈0 and 𝐾 we end up with a constant matrix 𝐴𝑖𝑗  of 

the form    

 

 

𝐴𝑖𝑗 =

{
 
 

 
 

 0
 𝑞2

 0
 0

−𝑖 cos𝛽
 0

   1
   0
   0
   0
   0

  −𝑖 𝐾 cos𝛽

   0
  0
   0
   𝑞2

  −𝑖 sin𝛽
   0

   0
   0
   1
   0
   0

   𝑖 𝐾 sin𝛽

   0
   0
   0
   0
   0

   0 − 𝐾 𝑞2

   0
   𝑖 cos𝛽/𝐾

   0
  𝑖 sin𝛽/𝐾

   0
   0

 

}
 
 

 
 

  

 

(20) 

where 

𝑞2 = 𝑘2 + 𝑖 𝑘
𝑈0cos𝛽

𝐾
 (21) 
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The interesting thing is that analytical solutions to (8) and (13) exist for this constant matrix. The 

solution to (13) is 𝑌(𝑧) = 𝑌(𝑧0) 𝑒
−𝐴 (𝑧−𝑧0) where the matrix exponential  𝑒−𝐴 (𝑧−𝑧0) can be written 

(by Mathematica) as a relatively compact, analytical expression. It is still several pages long so 

there is no need write it here.  

 

This can be used to make approximate solutions to the integration from one level to the next 

using values of 𝑈0 and 𝐾 representative for the given atmospheric stability. 𝐾 is therefore not 

really constant, but rather piecewise constant. In order for the flux 𝐾 𝜕𝑈0 𝜕𝑧⁄  to be continuous,  

𝜕𝑈0 𝜕𝑧⁄  must also be piecewise constant and hence 𝑈0  must be continuous and piecewise 

linear, not piecewise constant as we assume. However, the difference should be small when the 

levels are closely spaced,   

 

When crossing a level 𝑧𝑗, where 𝐾 and 𝑈0 jump, the fluxes 𝐾𝑢′ and 𝐾𝑣′ should be continuous so 

that 𝑢 ’, 𝑣′  need to make appropriate jumps while 𝑢 , 𝑣  and 𝑤   are simply continuous. The 

pressure also jumps due to the 𝛿 function generated by 𝜕𝐾 𝜕𝑧⁄ = Δ𝐾 𝛿(𝑧 − 𝑧𝑗) in equation (7f). 

These adjustments can be expressed as a matrix operating on 𝑋𝑖 → 𝑋𝑖 + 𝐵𝑖𝑗𝑋𝑗  each time the 

integration of level (8) passes a level. We are actually integrating (15) where the corresponding 

operation should be 𝑌𝑖𝑗 → 𝑌𝑖𝑗 − 𝑌𝑖𝑘𝐵𝑘𝑗. 
 

The hope has been that the use of analytical expressions would help minimizing the generation 

of numerical noise and make the solver more robust. Unfortunately there has been some 

problems with the implementation of the method in Mathematica which are not yet solved. The 

eigenvalues of 𝐴𝑖𝑗  are ±𝑘 and ±𝑞. For neutral and unstable conditions 𝑈0 𝐾 → 0⁄  for 𝑧 → ∞, 

but for stable conditions we have 𝑈0 𝐾⁄ → ∞ for 𝑧 → ∞. The problems seem to be related to 

this.         

 

 

YAWED WAKES AND LINEARIZATION 
 

Linearized models work surprisingly well for wakes from rotors that are not in yaw. The transverse 

component of the drag force from a yawed rotor can be treated in a similar way as the 

longitudinal component. The linear responses to each of the two force components can be 

calculated separately and the total linear response (in terms of wake deficit) is just their sum. 

This is all very convenient, but the response is only truly linear for an infinitesimal drag force, and 

the question is how far away we are from a linear response regime. In order to figure this out we 

made a numerical experiment using Paul van der Laan’s model [3]. The set-up is a single 

actuator disk placed in flat, rough terrain (𝑧0=3.52cm) and neutral conditions. The rotor is yawed 

20 degrees with respect to the incoming wind, and the thrust is uniformly distributed over the 

actuator disk and normal to it. The total thrust is fixed to                

𝑇 =
1

2
𝐶𝑇 𝜌 𝑈0

2 𝜋 𝑅2 (22) 

 

where 𝐶𝑇 is the thrust coefficient, 𝑈0 is the approaching wind speed at hub neight (90m), 𝜌 is 

the air density and 𝑅=63m is the rotor radius. The exercise consists in keeping everything fixed 
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except the thrust coefficient 𝐶𝑇. Runs were made using the values 𝐶T=0.8, 0.4, 0.2, 0.1 and 0, 

and the velocity deficit was calculated by subtracting results for 𝐶T=0 from the other results. For 

𝐶T  =0 there is of course no wake and the obtained velocity profile is logarithmic with tiny 

deviations, probably resulting from the zooming nature of the grid. These deviations are likely to 

cancel out when the deficit is calculated as the difference between two numerical solutions.  

 

The detailed thrust distribution is probably not very important except near the rotor. Further 

away, where the wake has spread out, the wake will only ‘remember’ the total force. This could 

justify a simplified forcing where only the force vector is turned, while the actuator disk remains 

perpendicular to the incoming wind direction. For numerical reasons the force field is also 

smeared out so that it is not concentrated on an infinitely thin disk. With this setup only two 

cases, one for longitudinal and one for transverse forcing, are needed to cover all yaw angles. 

Note that the wake deficit Δ𝑈 is a left-right (spanwise) symmetric for longitudinal forcing and 

antisymmetric for transverse forcing.  

 

Results are presented in figs 2-5 which show cross-wind profiles of Δ𝑈/(𝑈𝑜 𝐶𝑇) at hub height for 

various downwind distances and 𝐶𝑇 values. For a linear model  Δ𝑈/𝐶𝑇 should be independent 

of independent of 𝐶𝑇 and all curves should collapse. Judged from the top plots there is a decent 

collapse except for the 𝐶𝑇 = 0.8 curve which lies a bit higher than the rest except for the 𝑥 =
12𝐷 case where it is lower. There is also clear tendency for the wakes to shift more to the right 

as 𝐶𝑇 increases. For the symmetric part the collapse is also fair, but for the anti-symmetric part 

there is no collapse at all except for 𝑥 = 0𝐷 and in the tails.  Fig. 6 shows a nice collapse in the 

tails indicating that the response is indeed linear in the region outside of the main wake. Inside 

the wake, on the other hand, there is no collapse at all. The dashed yellow curve is an 

extrapolation to 𝐶𝑇=0 based on a polynomial fit to the data, and is thus an estimate of the linear 

response. It looks completely different with opposite sign compared to the rest of the curves. It 

is also very small and actually shifts the wake in the wrong direction.       

 

The lesson to learn from the numerical experiment is that the symmetric part of the wake 

responds fairly linearly while the anti-symmetric part is more complicated and even for 𝐶𝑇 = 0.1 

the higher order terms dominate. This is bad news for Fuga which calculates the antisymmetric 

part of the wake from the linear response to transverse forcing.  

 

The observation that the shifting of the wake is a second order effect should not come as a 

surprise (even if it actually did). Linearization basically consists in dropping the non-linear term 

Δ𝒖 ⋅ ∇ Δ𝒖. This means that the perturbation is not allowed to advect itself, and without this self-

interaction the wake is unable to drift to the side as it moves downwind. We can also observe 

that the shape of the deficit profiles is approximately self-similar at downwind distances of more 

than a few 𝐷, but shifted to the side so that 

   

Δ𝑢 ∼ 𝐴 𝐹 (
𝑦 − 𝜆

𝜎
) (23) 

 

where 𝐴, 𝜆 and 𝜎 are functions of 𝑥, 𝑧 and 𝐶𝑇 . 𝐹 is of approximately Gaussian shape and we 

may use the maximum deficit Δ𝑢𝑚𝑎𝑥 as an estimate of 𝐴. Fig. 7 shows that Δ𝑢𝑚𝑎𝑥 is proportional 

to 𝐶𝑇 up to at least 𝐶𝑇=0.4.   
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Both 𝐴 and 𝜆 vanish for 𝐶𝑇=0 while 𝜎 is positive and  their Taylor expansions therefore look like 

this  

 

𝐴 = ∑𝐴𝑛

∞

𝑛=1

𝐶𝑇
𝑛 

 𝜆 = ∑𝜆𝑛

∞

𝑛=1

𝐶𝑇
𝑛 

𝜎 = ∑𝜎𝑛

∞

𝑛=0

𝐶𝑇
𝑛 

(24) 

hence 

   

Δ𝑢 ∼ 𝐴1𝐹 (
𝑦

𝜎0
) 𝐶𝑇 + {𝐴2𝐹 (

𝑦

𝜎0
) + 𝐴1𝐹

′ (
𝑦

𝜎0
) (

𝑦 𝜎1

𝜎0
2 −

𝑦𝜆1
𝜎0
)}𝐶𝑇

2 +⋯  (25) 

 

Here we observe that there is no 𝜆 in the first term and hence no shift to first order. 
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Fig 2. Top: Δ𝑢/(𝑈𝑜 𝐶𝑇)at hub height 0D downwind of the rotor. Middle: the left-right symmetric 

part of Δ𝑢/(𝑈𝑜 𝐶𝑇). Bottom: antisymmetric part of Δ𝑢/(𝑈𝑜 𝐶𝑇). 
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Fig 3. Top: Δ𝑢/(𝑈𝑜 𝐶𝑇) at hub height 2D downwind of the rotor. Middle: the left-right symmetric 

part of Δ𝑢/(𝑈𝑜 𝐶𝑇). Bottom: antisymmetric part of Δ𝑢/(𝑈𝑜 𝐶𝑇). 
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Fig 4. Top: Δ𝑢/(𝑈𝑜 𝐶𝑇) at hub height 5D downwind of the rotor. Middle: the left-right symmetric 

part of Δ𝑢/(𝑈𝑜 𝐶𝑇). Bottom: antisymmetric part of Δ𝑢/(𝑈𝑜 𝐶𝑇). 
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Fig 5. Top: Δ𝑢/(𝑈𝑜 𝐶𝑇) at hub height 12D downwind of the rotor. Middle: the left-right symmetric 

part of Δ𝑢/(𝑈𝑜 𝐶𝑇). Bottom: antisymmetric part of Δ𝑢/(𝑈𝑜 𝐶𝑇). 
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Fig 6. The same as fig 4 (middle) except that the ordinate axis has been stretched. 

 

 

    
 

    
 

Fig 7. Plots of Δ𝑢𝑚𝑎𝑥/𝑈𝑜 against 𝐶𝑇 for 𝑥/𝐷 = 0, 2, 5 and 12. 
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A NEW LINEARIZATION TECHNIQUE 
 

The last section revealed that wake deflection is a second order effect. This is a serious problems 

for linearized models if they are to cope with yawed rotors. In this section we will propose a way 

out of the dilemma.  

 

The idea is to use new coordinates 𝑥𝑖́  that are shifted in the transverse direction (along the 𝑦-

axis) 

 

�́� = 𝑥 

�́� = 𝑦 − 𝜆 

�́� = 𝑧 

(26) 

 

In other words, the perturbation expansion is for the problem where 𝑓𝑖 is replaced with 𝑠𝑓𝑖 and 

the shift 𝜆 is a functions of 𝑠, 𝑥, 𝑦 and 𝑧. We can choose smooth function as long as 𝜆 → 0 for 

𝑠 → 0 and  the coordinate transformation  𝑥𝑖 →  𝑥𝑖́   is one-to-one. We will return to the choice of 

𝜆.  
 

The governing equations (1) and (2) should be written in new coordinates, which amounts to 

replacing derivatives using the chain rule 

 

𝜕

𝜕𝑥𝑖
=
𝜕�́�𝑗

𝜕𝑥𝑖

𝜕

𝜕�́�𝑗
=

𝜕

𝜕�́�𝑖
−
𝜕𝜆

𝜕𝑥𝑖

𝜕

𝜕�́�
=

𝜕

𝜕�́�𝑖
−

𝜕𝜆
𝜕�́�𝑖

1 +
𝜕𝜆
𝜕�́�

𝜕

𝜕�́�
∼

𝜕

𝜕�́�𝑖
−
𝜕𝜆

𝜕�́�𝑖

𝜕

𝜕�́�
 (27) 

The first order equations will then contain the same terms as before with 𝜕 𝜕�́�𝑖⁄  replacing 𝜕 𝜕𝑥𝑖⁄   

and extra terms where 𝜕 𝜕𝑥𝑖⁄ is replaced with - 𝜕𝜆 𝜕�́�𝑖⁄ 𝜕 𝜕�́�⁄  . However, since 𝜆  is first 

order, 𝜕𝜆 𝜕�́�𝑖⁄  must operate on a zero order term in order to yield a first order term, but they only 

depend on �́�, not on �́�. Therefore there are no extra terms and the linearized equations therefore 

look exactly as before except for the accents on �́�𝑖. It is natural to require 𝜆=0 on the actuator 

disk so that it stays circular in the new coordinate system. The problem is therefore exactly the 

same as before we made the coordinate transformation. The solution is therefore the same as 

before except that we have to decide which coordinate system it refers to.   

 

We shall choose 𝜆 in such a way that �́� does not change along a streamline. This eliminates wake 

deflection in the new coordinates system (it will of course reappear when transforming back to 

old coordinates). The requirement means that 

 

0 = 𝑈𝑖
𝜕�́�

𝜕𝑥𝑖
= 𝑈𝑖 {

𝜕�́�

𝜕�́�𝑖
−

𝜕𝜆
𝜕�́�𝑖

1 +
𝜕𝜆
𝜕�́�

𝜕�́�

𝜕�́�
} = 𝑉 −

𝑈𝑖
𝜕𝜆
𝜕�́�𝑖

1 +
𝜕𝜆
𝜕�́�

 

 

(28) 

Since 𝜆 is first order (or higher) so the first order approximation to (24) is simply 
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𝑈0
𝜕𝜆

𝜕�́�
= 𝑣 

 

(29) 

 so that 

𝜆(𝑥,́ �́�, �́�) =
1

𝑈0(�́�)
∫ 𝑣(�̃�, �́�, �́�)
�́�

�́�𝑜

𝑑�̃� (30) 

 
 

where (�́�𝑜 , �́�, �́�) is a point in the rotor plane. The integral is easy to do numerically. It yields 𝜆 as 

a function of �́�, but this can easily be converted to a table of 𝜆(𝑥, 𝑦, 𝑧) values which it is more 

convenient since.  

 

Fig, 7 shows the new coordinate system for a case similar to the one studied in the last section. 

The exaggerated value 𝐶𝑇=2 was used for clarity. It is comforting to see that lines of constant �́� 

do not cross indicating that the transformation is indeed one-to-one. The highest possible value 

is 𝐶𝑇=2.18 where 𝜕𝜆 𝜕�́�⁄ = −1 at a point and the denominator in (23) vanishes.  

 

 
Fig 7. The new coordinate system illustrated by lines of constant �́� and �́� at hub height.  The 

spacing is 𝐷 /4 and the red dot is the hub. The extreme value 𝐶𝑇=2 was used the make the 

distortion more visible.  

 

The output from Fuga is a table containing the normalized wake deficit 𝑢/(𝐶𝑇𝑈
0(𝑍hub)) for a 

single, solitary rotor, and multi wake solutions are obtained by translating, scaling and 

superimposing instances of the tabulated single wake. In the new scheme there is an extra table 

containing 𝜆/𝐶𝑇 which is used to tell how much to shift 𝑦 before looking up in the wake table. 

Even if linear theory was used to derive these tables, the combined use of them yields the 

appropriate, non-linear result.    

 

Equation (25) is for a single wake. When more than one turbine is present, 𝜆 should be obtained 

as the sum of contributions from each of them. This means that the shapes of actuator disks 

that are hit by wakes will be distorted in the transformed coordinates, which leads to all kinds of 

complications. In order to keep things simple, we propose to simply superimpose the wake 

deficits as functions of (𝑥, 𝑦, 𝑧) even if superposition is only allowed for functions of (�́�, �́�, �́�).  

 

Fig. 8  shows the difference between the linear model and the new linear model.    
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Fig 8. Velocity deficit profiles at hub height for 𝑪𝑻=0.2 (red), 𝑪𝑻=0.4 (blue) and 𝑪𝑻=0.8 (green) 

at three distances x=0.2 D, x=0.4 D and  x=0.8 D, Top: conventional, linear theory.  Bottom: the 

new method.    
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