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EXECUTIVE SUMMARY 
Classical control has been used to regulate and dampen wind turbine behaviour for decades. It has 
limitations, which turbine designers must spend a great deal of effort to circumvent, for example 
limits on actuator demands and their derivatives, and tuning only one SISO loop at a time. 

MPC is a radically different approach to the control task, whereby the whole linear model, with all 
inputs and outputs, is used to form predictions into the short time horizon ahead. These predictions 
are variables, linear in the input (control action) degrees of freedom, which allows the upcoming 
behaviour to be optimised relative to a simple cost function covering all inputs and outputs. 

Additionally, MPC naturally respects constraints, obviating work-arounds like anti-windup control. 
It does however come at a price – computational complexity. It’s fair to say it is also more complex 
to implement, but experience suggests that the extra effort put into the design of the framework 
results in much less effort for the engineer tasked with tuning the controller. 

The present work focusses on the application of MPC rather than new theoretical findings, but 
contains an introduction to the theory to help explain the need for some of the more complex 
elements. Many lesser-known such applied elements are described and motivated, which a ‘vanilla’ 
implementation of MPC would typically not include. These elements make the difference between 
success and failure of MPC, in the same way that the myriad ‘tricks’ are vital in classical control. 

Particularly of value to the success of this implementation are: 

 Input blocks, which vastly increase computation speed 

 Persistent disturbance rejection, vital to operation with realistic wind 

 A single linearisation applied throughout, covering above and below rated conditions 

 Stabilising feedback, for linearisations that are not open-loop stable 

The author acknowledges that in its current state, this implementation is not ready for installation 
on a wind turbine. But it provides the foundation for such a venture. Comparisons with classical 
control on the basis of fatigue loads or energy capture are also not valid at this stage, since the 
capability to accommodate appropriate signal filters is not yet in place. 
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THEORY 
This chapter on theory is intended to motivate the use of MPC for wind turbine control by showing 
how its structure arises naturally from the problem definition. While it is not necessary for the 
reader to understand every stage of the mathematics, they are all essential to the correct 
functioning of MPC, and can be considered as bolts that hold the framework together. As such, 
when the framework fails to deliver as expected, typically the underlying mathematics can assist 
with troubleshooting. Much of the description is derived from the author’s thesis, [Evans 2014] but 
with simplifications. 

BACKGROUND TO MPC 

Automatic control is found all around us. A thermostat connected to a heater forms a simple on-off 
control system. More complex than that is a proportional controller, the output of which is 
calculated as a gain parameter multiplied by the difference between the measurement and a set-
point. The behaviour of a system under proportional control will often be preferable to the 
behaviour of the system under on-off control because the controller does not wait for the 
measurement to reach a threshold and then slam the control action fully on but rather smoothly 
applies the control action depending on the deviation from the set-point. 

An on-off controller does not cause the plant to settle at a constant steady state. Instead, it will 
alternate between the on and off thresholds. A proportional controller may result in a constant 
steady-state, but it may not be at the desired value. We can alter the steady-state of a system under 
proportional control by applying an offset to the control action, i.e. adding a constant value. 
However, in many applications, the exact offset required may not be known or may change over 
time. 

Proportional-Integral (PI) control is used to adapt the control offset over time. The controller 
integrates the difference between measurement and set-point, and the control action is a weighted 
sum of that integral and the proportional term. A similar form of controller adds in a differential, or 
derivative, term. Such PID controllers form the basis of the majority of industrial controllers. 

Model predictive control (MPC) is a framework for the control of a system by forming predictions 
of the behaviour of the system and then optimising those predictions. The predictions are variables 
that depend on the proposed controller actions. That dependence is defined by a model, a 
mathematical representation of the system to be controlled. The optimisation is posed as a 
numerical problem constituting the minimisation of a cost function with respect to the proposed 
controller actions over a finite time horizon into the future. The first predicted inputs of the cost 
minimising sequence are applied to the system, then a new measurement of the system is taken, 
which requires the optimisation to be solved again, thus providing a mechanism for incorporating 
feedback. 

What sets MPC apart from other advanced control schemes is its direct ability to account for 
constraints, not only on the inputs to the system but also on the system’s states and outputs. PID 
can incorporate anti-windup concepts to manage input constraints but there’s no clear way to 
extend that to output constraints. A detailed review of many aspects of MPC is given in 
[Mayne 2000], a summary written at a time when linear MPC, in discrete time with no uncertainty, 
was quite mature. 
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DERIVATION OF MPC 

MPC naturally arises from an evolution of control as one introduces discrete time, multi-input multi-
output (MIMO) and constraints. It requires much more computation than classical control, but 
techniques have been developed to make this manageable. Over the last few decades, what 
constitutes a ‘solution’ to a control problem has changed from a specific value to any algorithm that 
poses a numerical problem with a known solution. All MPC in this project require the solution of a 
quadratic program (QP), that is the minimisation of a quadratic cost function subject to linear 
constraints. 

To introduce the mathematical concept of MPC, firstly consider an unconstrained optimisation. A 
linear time invariant (LTI) model is defined as follows: 

  𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘  (1) 

 

Here 𝑥 ∈ ℝ𝑛𝑥  and 𝑢 ∈ ℝ𝑛𝑢 . 

The problem of minimising an infinite horizon quadratic cost on the state and inputs, without 
constraints is defined as follows. The abbreviation s.t. means ‘subject to’. 

 
min

𝑢𝑘

∑ 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘

∞

𝑘=0

 

s.t. (1) 

(2) 

 

The solution to (2) is given by [Kalman 1960]. It is the linear quadratic regulator (LQR), defined as: 

 𝑢𝑘 = 𝐾𝑥𝑘 , 𝐾 = −(R + BTPB)−1BTPA (3) 

 

Here 𝑃 is the solution to the discrete time algebraic Riccati equation. The feedback gain 𝐾 is optimal 
for the unconstrained system. 

Now we consider a constrained optimisation problem by introducing linear state and input 
constraints to give a new problem: 

 
min

𝐮𝑘

∑ 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘

∞

𝑘=0

  

s.t. (3),  𝐹𝑥𝑘 + 𝐺𝑢𝑘 ≤ 𝟏 

(4) 

 

Here 𝟏 is a vector of ones and 𝐹 ∈ ℝ𝑛𝐹×𝑛𝑥 , 𝐺 ∈ ℝ𝑛𝐺×𝑛𝑥. The new symbol 𝐮𝑘 is a concatenation of 
𝑢𝑖|𝑘 for all 𝑖, which is clearly impossible in practice. Indeed, (4) is intractable because there are 

infinite degrees of freedom. This problem will be address shortly. First some helpful notation is 
introduced. 

During optimisation, future states 𝑥𝑘, 𝑘 > 0  depend on the input sequence, which consists of 
optimisation variables. The optimisation happens at every time step, so it is worth denoting 
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optimisation variables and their dependencies in terms of both the time step 𝑘 and the number of 
time steps into the future the variable represents, 𝑖. Thereby the predicted states are written as 𝑥𝑖|𝑘 

and the predicted inputs are written as 𝑢𝑖|𝑘, where the bar operator is pronounced ‘given’. 

The subscript notation introduced here means the predicted value at time step 𝑖 + 𝑘, given the 
known state at time step 𝑘, namely 𝑥𝑘. Note that 𝑥0|𝑘 ≡ 𝑥𝑘. The constrained optimisation problem 

in terms of predicted states is now written as: 

 
min

𝐮𝑘

∑ 𝑥𝑖|𝑘
𝑇 𝑄𝑥𝑖|𝑘 + 𝑢𝑖|𝑘

𝑇 𝑅𝑢𝑖|𝑘

∞

𝑖=0

  

s. t.   𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘 , 𝐹𝑥𝑖|𝑘 + 𝐺𝑢𝑖|𝑘 ≤ 𝟏 

(5) 

 

To address the intractability of the infinite horizon, the ‘dual mode’ paradigm is introduced as in 
[Rossiter 1998]. This provides a way to reduce the problem to instead involve a finite number of 
degrees of freedom. Firstly, we find a region of state space where the controller (3) satisfies the 
constraints in (4). This is termed the terminal set 𝑋𝑓, and methods for finding it are discussed in the 

literature, e.g. [Gilbert 1991]. The remainder of this work assumes that the terminal set is large and 
is therefore not calculated. 

The next stage in dual mode MPC design is to break the horizon into two modes. Mode 1 has degrees 
of freedom for the inputs: 

𝐮𝑘 = [𝑢0|𝑘 … 𝑢𝑁−1|𝑘] 

and Mode 2 is under autonomous LQR control as per 𝑆1. The cost of the infinite horizon of Mode 2 
is given by: 

𝑥𝑁|𝑘
𝑇 𝑄̅𝑥𝑁|𝑘 

 Here 𝑄̅ is the solution of a Lyapunov equation. The dual mode control problem is as follows: 

 
min

𝐮𝑘

(𝑥𝑁|𝑘
𝑇 𝑄̅𝑥𝑁|𝑘 + ∑ 𝑥𝑖|𝑘

𝑇 𝑄𝑥𝑖|𝑘 + 𝑢𝑖|𝑘
𝑇 𝑅𝑢𝑖|𝑘

𝑁−1

𝑖=0

)  

s. t.   𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘, 𝐹𝑥𝑖|𝑘 + 𝐺𝑢𝑖|𝑘 ≤ 𝟏, 𝑥𝑁|𝑘 ∈ 𝑋𝑓 

(6) 

 

The horizon length N remains choice for the control engineer or can be left as an optimisation 
problem to be solved in an outer loop. To solve (6) where 𝑁 is undecided, [Sznaier 1987] suggests 
choosing an initial value of 𝑁, solving (6), checking whether 𝑥𝑁|𝑘 ∈ 𝑋𝑓 and increasing 𝑁 if not. In 

this project we instead choose 𝑁 based on experience. 

The work of [Rawlings 1993] shows that satisfaction of constraints (6) at time at time 𝑘 implies 
feasibility for all time after 𝑘, a property termed ‘recursive feasibility’. Solutions of (6) are optimal if 
𝑁 is long enough that the cost cannot be reduced by increasing 𝑁 by one. In this work, we do not 
use 𝑋𝑓 and so there is no guarantee of recursive feasibility. 

Each subsequent predicted state contains terms in increasing powers of 𝐴. To avoid numerical ill-
conditioning, we re-state the prediction dynamics in terms of Φ = 𝐴 + 𝐵𝐾 as in [Rossiter 1998]. If 
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(𝐴, 𝐵) is stabilisable then it is possible to find such an LQR gain 𝐾. Accordingly, the predicted inputs 
are decomposed as: 

 𝑥𝑖+1|𝑘 = Φ𝑥𝑖|𝑘 + 𝐵𝑐𝑖|𝑘 

𝑢𝑖|𝑘 = 𝐾𝑥𝑖|𝑘 + 𝑐𝑖|𝑘, 𝑖 < 𝑁 
(7) 

 

This removes 𝐮𝑘  as the optimisation variable and replaces it with 𝐜𝑘 = [𝑐0|𝑘 … 𝑐𝑁−1|𝑘] . If the 

optimal solution touches no constraints for the entire Mode 1 horizon, then 𝑐𝑖|𝑘 = 0  for all 𝑖 

because the problem is equivalent to LQR. 

INPUT BLOCKS 

It is beneficial for feasibility and optimality to have a long prediction horizon 𝑁 . But it is 
computationally expensive to have an optimisation variable for every time step in that horizon. A 
compromise is possible, which would violate the guarantee of recursive feasibility if one were in 
place, but which vastly helps reduce computational cost. We now explain a method to reduce the 
computational cost by reducing the degrees of freedom. 

Input blocking constrains some neighbouring input degrees of freedom to be equal within blocks. 
As the time steps stretch further into the prediction horizon, the temporal resolution is deemed less 
important, so the blocks start small and grow with 𝑖. In this work, the blocks are defined so that they 
grow by one time step per block, so that: 

 𝑐1|𝑘 = 𝑐2|𝑘 , 𝑐3|𝑘 = 𝑐4|𝑘 = 𝑐5|𝑘, 𝑐6|𝑘 = ⋯ = 𝑐9|𝑘, ⋯ (8) 

 

Note that the autonomous part of the control, i.e. 𝐾𝑥𝑖|𝑘 is not blocked so the relationships in (8) 

are not true for 𝑢𝑖|𝑘. 

CONDITIONING 

The quadratic program that is created in this type of MPC requires a numerical solver to iterate over 
valid solutions, which in turn requires the cost function and constraints to be numerically well-
conditioned. To visualise the solution of a well-conditioned and ill-conditioned QP, see Figure 1. 

 

Figure 1: A well-conditioned and an ill-conditioned QP with illustrative iterative solutions. Linear constraints are 
shown as planes intersecting the space. The cost is quadratic, so a line of constant cost forms an ellipse. 

Valid region 
Valid region 
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APPLICATION 
The theory above is now applied to the problem of controlling a wind turbine in Bladed. A recent 
review of applications of MPC to wind turbine control is presented in [Lio 2014], including a 
summary of proven and potential benefits over classical control. 

The turbine in this work has the following basic characteristics: 

Constant Value 
Rotor diameter 170 m 
Hub height 107 m 
Rated generator speed 409 rpm 
Fine pitch angle -0.5°  
Rated generator torque 177 kNm 
Rated wind speed 11 m/s 

LINEARISATION 

The first step is to linearise the wind turbine model, since we are applying linear MPC. And since our 
formulation of MPC assumes an LTI plant, only one linearisation point is entered into the Bladed 
linearisation tool. Much work exists on extending the capabilities of MPC to include multiple 
linearisation points, e.g. [Kumar 2009]. 

We aim to operate the new MPC controller in above- and below-rated conditions, so the 
linearisation point we chose is rated wind speed, specifically the highest wind speed where the 
steady-state pitch angle is equal to the fine pitch angle. 

As usual, dynamic stall and pitch nonlinearities are disabled for the linearisation (not for the Bladed 
model used for time domain simulation). The linear model is imported into Matlab where the 
remainder of the design is performed. We return to Bladed for the validation stage. 

Note that there will inevitably a difference between the linear model and the full turbine model. 
This mismatch leads to uncertainty in 𝐴, 𝐵 and that means that uncertainties are multiplied by each 
other during the prediction horizon. This project does not tackle this problem but there is a thorough 
discussion with efficient solution in [Evans 2014]. 

Since we will not know the state 𝑥0 at run-time, it must be estimated from the measurements. 
Additionally, costs and constraints are more natural applied to measurements than states. These 
facts motivate an expansion of the notation as follows: 

 𝑥𝑖+1|𝑘 = 𝐴𝑥𝑖|𝑘 + 𝐵𝑢𝑖|𝑘 

𝑦𝑖|𝑘 = 𝐶𝑥𝑖|𝑘 + 𝐷𝑢𝑖|𝑘 
(9) 

 

Here, 𝑦𝑖|𝑘 is the predicted measurement at time step 𝑖 + 𝑘 given the measurements up to time step 

𝑘. The state 𝑥𝑘 is assumed known, as in the theory, but in reality it is estimated using a Kalman filter 
to be discussed later. Matrices 𝐴, 𝐵, 𝐶, 𝐷 are provided in the linear model, but henceforth 𝐷 will be 
set to zero and ignored since it is impossible to have an immediate impact on the measurements 
with the inputs for a plant like this. When constraints and cost are be applied to the measurements 
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rather than states the QP form of the problem is retained, since 𝐹𝐶𝑥𝑖|𝑘 is linear and 𝑥𝑖|𝑘
𝑇 𝐶𝑇𝑄𝐶𝑥𝑖|𝑘 

is quadratic, although 𝐹, 𝑄 must be redefined for this. 

The Bladed linear model has a state called ‘rotor rigid body’, which represents the azimuthal angle 
of the rotor and is only useful for controllers that use the azimuth, e.g. individual pitch control. Since 
this is not the case for this project, the rotor rigid body state is removed with the Matlab function 

modred with the option ‘truncate’. 

MEASUREMENTS 

The measurements we chose to include in this project are: 

1. Measured generator speed 

2. Measured pitch angle (collective) 

3. Inferred pitch rate (collective) 

4. Measured fore-aft acceleration 

On some wind turbines, the pitch system can additionally report pitch rate, so inferring that is not 
required. But for the sake of generality it is treated here as something that we must calculate at 
run-time based on filtered difference in subsequent pitch angle measurements.  

Each of the measurements is a scalar (double) for each time step, which are stacked in a column 
vector for each time step denoted 𝑦̃𝑘 as introduced above. 

Note the wind speed as measured at the anemometer is not one of the measurements. This is quite 
normal for wind turbine control, at least for algorithms that cover normal operation. 

CONTROL ACTIONS 

The control actions we chose to include in this project are: 

1. Pitch angle demand (collective) 

2. Generator torque demand 

Note that pitch angle demand certainly does not equal measured pitch angle. The Bladed model 
includes pitch rate and acceleration limits and a second-order transfer function. The linearisation 
contains just the transfer function, which introduces a phase lag between demand and 
measurement. 

The output from the MPC optimisation at time 𝑘 is 𝑢𝑘 and the actions applied to the turbine model 
at run time are 𝑢̃𝑘 as described above. 

SCALING AND OFFSETS 

Inputs (measurements) and outputs (control actions) are assigned a scale and offset so that in the 
MPC formulation their typical values are in the range [−1,1] to be well-conditioned. The offsets, 
which are denoted 𝑦̅, 𝑢̅ , are available from Bladed as part of the linear model, but the scales, 
diagonal matrices denoted 𝑆𝑦, 𝑆𝑢, are chosen based on turbine constants. Raw measurements 𝑦̃ are 

converted for use in MPC, then the solution of the optimisation is converted to a control action 𝑢̃, 
both as follows: 
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 𝑦𝑘 = 𝑆𝑦
−1(𝑦̃𝑘 − 𝑦̅) 

𝑢̃𝑘 = 𝑆𝑢𝑢𝑘 + 𝑢̅ 
(10) 

 

Clearly the linear model matrices must also be scaled. Denoting the matrices that come directly 
from Bladed as 𝐴′, 𝐵′, 𝐶′, the linear model matrices are scaled as: 

 𝐵 = 𝐵′𝑆𝑢, 𝐶 = 𝑆𝑦
−1𝐶′ (11) 

 

Note 𝐴 = 𝐴′ since the states will be numerically conditioned by 𝐵, 𝐶. 

A similar treatment is required when defining constraints. For example, future control actions that 
must be less than or equal (strict inequalities are discouraged in MPC) to a constant 𝑢max must be 
posed as: 

 𝑢𝑖|𝑘 ≤ 𝑆𝑢
−1(𝑢max − 𝑢̅) (12) 

 

Note that although written differently to the constraints in (4), any linear constraint can be re-
written in that format. The transformation is easy to perform by hand, but Matlab tools exist to 
make it easier, such as YALMIP [Löfberg 2004]. 

WIND MODEL 

The linear model from Bladed has an additional input, hub centre wind speed. This is not a control 
action, but it is also not a random disturbance, at least not independent identically distributed (IID). 
A Kalman filter can only reject white noise, so it is the responsibility of the controller to reject 
anything more persistent, just as it is with a PID controller. 

In MPC, persistent disturbances can be rejected by state estimation, and for this, the link between 
the white noise underlying the turbulence and the hub centre wind speed must be modelled. This 
is an opportunity to exploit known structures in the structure of turbulence and use that for 
predictions, as explained in detail in [Liu 2018]. In general, this approach is known as disturbance 
accommodating control (DAC) and is detailed outside of MPC in [Wright 2004] and [Selvam 2007]. 

To simplify the process for this work, we assume the wind speed is simply first-order low pass 
filtered white noise. The filter will be denoted 𝐻𝑣. 

 
𝐻𝑣(𝑠) =

1

1 + 𝜏𝑣𝑠
 (13) 

 

Here, 𝜏𝑣  is a time constant, which we set as 20 seconds to allow the wind to have enough low 
frequency content. It has one state, which the Kalman filter attempts to estimate at run time. In the 
MPC problem formulation, the filter is connected to the linear turbine model using the Matlab 
function connect. 



  TotalControl - Project no. 727680 

 12 

LOW FREQUENCY FEEDBACK 

The linear model that is used for predictions in MPC must be stable for the cost to be bounded in 
the infinite horizon, hence the dual mode paradigm as described in the theory chapter. In general, 
linear models are unstable at some wind speeds, because faster rotors generate more lift, which 
accelerates the rotor more. Choosing to stabilise the plant with the LQR gain in feedback is the cost-
optimal option, but it isn’t necessarily practical. In this project, the stabilising feedback was chosen 
to be a simple PI loop from measured generator speed to torque demand. 

Since the use of a simple PI feedback is not cost-optimal, the MPC solution is not strictly cost-optimal 
in Mode 2. But for long prediction horizons, Mode 2 cost (calculated using 𝑄̅ ) becomes less 
significant. This choice of stabilisation also implies that 𝑐𝑖|𝑘 = 0 is not cost-optimal for Mode 1 in 

the absence of constraints, which can have an impact on the numerical conditioning of the QP. 
However, importantly, at least one of the constraints we want to apply will normally be active, since 
we want to discourage pitch activity below rated generator torque. 

The PI controller for this purpose clearly has to be tuned, but there is no need to tune it accurately 
as in classical control because it will be supplemented by the MPC optimisation variables. For the 
sake of completeness, the format and values in use in this project are as follows, where the torque-
speed (QS) stabilisation transfer function is denoted 𝐻𝑄𝑆: 

 
𝐻𝑄𝑆(𝑠) =

1.2(1 + 3𝑠)

𝑠
 (14) 

 

 

Figure 2: (Left) Bode plot of the torque-speed PI stabilising loop. (Right) Step response of the linear model with the 
stabilising loop connected, from wind speed to measured generator speed. 

As Figure 2 shows, the torque-speed stabilisation is not aggressive, and certainly not optimal. Its 
primary purpose is to allow the Mode 2 horizon cost to be finite. The optimisation variables will 
drive down the cost in Mode 1, allowing for arbitrarily aggressive speed control, through the 
selection of output costs, to be described later. 
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𝐻𝑄𝑆 is connected to the linear model using the Matlab function feedback. The new linear model 

is then checked for stability before proceeding to the next steps. Some configurations of Bladed 
have very low damping on edgewise rotor modes, which at some wind speeds can appear as slightly 
negative damping. If the model is still unstable after the rotor speed stabilisation, we check which 
specific modes are unstable and correct them in the Bladed model through modal damping 
parameters, then re-linearise. 

The theoretical background and practical benefits of feedback stabilisation on an inner loop, over 
which the MPC problem is posed, is discussed in [Lio 2017]. During the TotalControl task leading to 
this deliverable, many alternative configurations of linear models and MPC problem definitions have 
been tried. Only this configuration, as per that paper, with stabilisation and Kalman filter state 
estimation has produced a working MPC controller. 

MODEL REDUCTION 

The linear model exported from Bladed and stabilised with 𝐻𝑄𝑆 has 67 states. This is too many to 

process in a QP at run time without an advanced solver. Besides, most of those states are low energy 
structural vibrations, which are not necessarily observable with the selected measurements, or 
controllable with the selected actions. Therefore, the model is reduced with the Matlab function 
balred. This allows the designer to choose the number of states preferred in the simplified model, 
which in this project was set to six. Note that this step happens before the wind model 𝐻𝑣 is applied. 
This adds one state. 

Seven states, only six of which relate to the turbine, two of which serve the pitch model, leaves only 
four states for the structural modes, i.e. position and velocity for only two modes. This is clearly a 
large simplification and future work will experiment with less swingeing model reduction. Less 
reduced models are more computationally expensive and harder to design Kalman filters for. But to 
ever compete with classical design, which can have any number of SISO filters, clearly an MPC would 
have to have more states. 

DISCRETISATION 

The reduced linear model is discretised. In this project we use a time step of 100 ms, which is five 
times longer than the time step of full commercially implemented controllers, to allow extra time 
for the solution of the QP. Two major technological improvements can be made to improve 
performance based on this selection. 

Firstly, the torque-speed stabilisation happens outside the MPC controller, so that can run at 20 ms. 
This introduces a major and minor time step paradigm, where the QP is solved once per major times 
step and simpler loops can be added on with a shorter step. For example, drivetrain damping 
typically impacts only a narrow range of frequencies, so can be added afterwards without 
interfering. These performance improvements are outside the scope of this work but are not  seen 
as high risk omissions. 

Discretisation uses the Matlab function c2d, with the default option ‘zero order hold’ to best 
represent the way measurements are processed in a turbine. No delays are added to the model at 
this stage, but LTI-based MPC does support delays in principle. 

Figure 3 shows the Bode diagram for one input and one output of the discrete plant against the 
continuous reduced order plant and the stabilised full order plant. 
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Figure 3: Bode diagram from generator torque demand to measured generator speed for the stabilised linear model 
(blue), the reduced model (green) and the discrete model (red, with Nyquist limit shown as a black bar). Clearly 

there are many modes ignored by the reduced model, which are thereby uncontrolled. 

KALMAN FILTER 

When given a sensible, well-conditioned plant model, making a Kalman filter can be quite easy. Of 
course, it is often more challenging in practice. This project takes the simplifying assumption of a 
fixed uncertainty on the measurements and plant, rather than monitoring the difference between 
measurements and filtered measurements to continuously update the Kalman gain matrix in run 
time. That improvement can be applied at a later date without impacting the MPC design. 

There are four measurements, so the covariance of the uncertainty is 4 × 4 . We assume the 
uncertainty is independent (which might not be strictly true for pitch angle and rate, see paragraph 
above). So the covariance matrix 𝑅𝐾𝐹 is diagonal and populated with numbers based on experience: 

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣, E(𝑣𝑣𝑇) = 𝑅𝐾𝐹 (15) 

 

Here, E is the expectation operator and 𝑣 is the measurement noise (assumed white). 𝑅𝐾𝐹 has 10−4 
on its diagonal. There is also uncertainty on the wind speed state update: 

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤, E(𝑤𝑤𝑇) = 𝑄𝐾𝐹 (16) 

 

Here, 𝐺 is an ‘allocator’ matrix that distributes the state update uncertainty 𝑤 across the states. We 
set 𝐺 such that 𝑤 is scalar and only applies to the wind state, meaning 𝑄𝐾𝐹  is 1 × 1 and has the 
value 10. 

The Kalman filter is then created with the Matlab function kalman. Now how can we know whether 
it’s estimating the states correctly? The states themselves have no physical meaning because they 
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are generated by model reduction. But the estimated states, multiplied by 𝐶  give estimated 
measurements, which should converge to the actual measurements over time. 

An impulse is applied to the white noise wind input to the reduced order model. The outputs of that 
model are recorded over a period of 10 seconds. Four of those outputs are measurements, which 
are fed into the Kalman filter. The other output is the wind speed, which we don’t have access to in 
the turbine but want to know that its state is being estimated correctly. 

The output from the Kalman filter is multiplied by 𝐶 to give the estimated measurements, i.e. the 
measurements that would arise if the state that has been estimated is correct. Note that we are not 
measuring anything about the wind speed or its white noise disturbance with the Kalman filter. The 
wind speed is estimated using the Kalman filter, which is based on the reduced linear model. This is 
a great result because it provides the persistent disturbance rejection that the integral gain provides 
in classical control. The results are shown in Figure 4 below. 
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Figure 4: The response of the full linear turbine and wind model (blue) to an impulse in wind white noise 
disturbance. The Kalman filter estimates the states, which are mapped back onto the measurements for 

comparison (green). Note the wind speed is correctly estimated after 4 s, purely from the four measured signals. 

COST FUNCTION 

We now have a workable prediction model. We need a cost function and constraints. We use the 
cost function format from (6) and the constraint format from (12). We do not want to penalise pitch 
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0 1 2 3 4 5 6 7 8 9 10
-5

0

5
x 10

-3
M

e
a
s
u
re

d
 g

e
n
e
ra

to
r 

s
p
e
e
d

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
x 10

-5

B
la

d
e
 1

 p
it
c
h
 a

n
g
le

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5
x 10

-4

B
la

d
e
 1

 p
it
c
h
 r

a
te

0 1 2 3 4 5 6 7 8 9 10
-0.01

0

0.01

N
a
c
e
lle

 f
o
re

-a
ft

 a
c
c
e
le

ra
ti
o
n

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

C
o
lle

c
ti
v
e
 w

in
d
 s

p
e
e
d

Time [s]



  TotalControl - Project no. 727680 

 17 

as well as the control actions. The cost applied to the predicted measurements is pre- and post-
multiplied by 𝐶 to form the cost on the predicted states: 

 𝑄 = 𝐶𝑇𝑄𝑦𝐶 (17) 

 

Tuning can be performed by modifying the values on the diagonal of 𝑄𝑦. The element corresponding 

to pitch angle is set to zero, because we do not want to penalise quasi-steady pitch action. This is 
because for a given wind speed above rated, there will be a steady-state pitch angle. The wind speed 
is not known at run-time so, like with a PI controller, we let the controller find the steady-state pitch 
rather than enforce one. Penalising deviation from the steady-state pitch angle at the wind speed 
where the linearisation was performed will result in poor low frequency wind rejection. 

There is no cost applied to the stabilising torque because that is persistent disturbance rejection 
below rated wind speed. The diagonal matrix 𝑅  has zero for pitch angle demand, for the same 
reason. The value for torque discourages large torque responses. 

As per (6), there is a terminal cost applied to the final predicted state. The terminal cost matrix is 

the solution to the discrete-time Lyapunov equation 𝐴𝑇𝑄̅𝐴 − 𝑄̅ + 𝑄 = 0 using the Matlab function 
dlyap. Remember 𝑄 = 𝐶𝑇𝑄𝑦𝐶  and note that 𝐴  is the state evolution matrix of the reduced 

discrete stabilised system and includes the wind model. The reason we calculate 𝑄̅  using the 
Lyapunov equation can be demonstrated with a formulation of the infinite horizon Mode 2 cost 𝐽. 

𝐽 = ∑ 𝑥𝑖|𝑘
𝑇 𝑄𝑥𝑖|𝑘

∞

𝑖=𝑁

 

= ∑(𝑥𝑖|𝑘
𝑇 𝑄̅𝑥𝑖|𝑘 − 𝑥𝑖+1|𝑘

𝑇 𝑄̅𝑥𝑖+1|𝑘)

∞

𝑖=𝑁

 

= 𝑥𝑁|𝑘
𝑇 𝑄̅𝑥𝑁|𝑘 

(18)a 

 

b 

 

c 

 

The final equality arises from all the terms in (18)b cancelling out, except for the first expression, for 
𝑖 = 𝑁. We can now use 𝑄̅ to calculate 𝐽 directly, provided we can calculate it so that (18)a equals 
(18)b. Since the sums are over the same range, the requirement can be re-posed in terms of its 
summands, with the 𝑥𝑖|𝑘  terms cancelling out on each side of the equation: 

 𝑄 = 𝑄̅ − 𝐴𝑇𝑄̅𝐴 (19) 

 

CONSTRAINTS 

The constraints we apply at each prediction step are that the pitch demand must be more positive 
than the fine pitch angle, and that the torque demand (plus stabilising torque) must be between 
minimum and maximum torque. 

Upcoming work will apply pitch rate and acceleration constraints. Pitch rate is a measurement, but 
acceleration isn’t. However, it can be approximated by a finite difference on predicted pitch rate 
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measurements. Constraints on outputs (measurements) must in general be applied carefully, with 
some technique to soften them if necessary to ensure feasibility. 

SUMMARY OF MODEL ADJUSTMENTS 

Previous sections have described some necessary differences between the prediction model and 
the raw linearisation from Bladed. These adjustments are the key differentiator between this work 
and previous works and are vital to the success of the scheme. Figure 5 shows a flow chart of the 
above-mentioned changes to draw them together for reference. 

 

Figure 5: Adjustments made to the raw linear model to prepare it for predictions and estimation 

QUADRATIC PROGRAM 

Quadratic programs are favoured in MPC because they have known methods of solution and they 
represent the underlying aims well. That is to say that the square of a deviation of a state, action or 
measurement from its steady-state value is a natural way to penalise that deviation, akin to 
minimising variance, and most constraints can be posed linearly in the optimisation variables. 

The choice of QP solver is a topic for future work. Some algorithms are more suited to certain QP 
properties than others. This work does not investigate the choice of solver, and instead uses a 
commonly applied QP solver for Matlab, called sedumi (Self-Dual Minimisation) [Sturm 1999]. 

The solver has a parameter eps, which represents how close two values in the state space have to 
be to be considered roughly equal, which clearly has a large influence on the precision and 
computational cost of the solution. If that parameter is set too large, the constraints might be 
de facto too tight and the problem appears infeasible. If it’s too small, the solver continues 
optimising well after the point where it becomes unnecessary, i.e. many decimal places that are 

irrelevant. This project sets eps to 10−5 but it’s highly recommended to tune it. 

To form the QP, we use YALMIP [Löfberg 2004]. This parses symbols in Matlab as if they were normal 
variables but then allows the QP to be saved as a dedicated object for run time solutions. We use 
the YALMIP function optimizer for this. We pass in the cost and constraint expressions, and let 
it know which solver to use and over which variables the cost can be optimised ( 𝑐𝑖|𝑘 ). The 

optimisation object is also given variables that are not to be optimised over, but are to be defined 
at run time, which in our case are: 
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 The output of the Kalman filter at time 𝑘, 𝑥𝑘 

 The stabilising torque, which is set outside MPC and used for in the constraints at run time 

The optimizer object can also be exported in matrix format, allowing implementation outside of 
Matlab. This is out of scope for this work but will useful later in TotalControl when MPC is 
implemented in C++. The intention is to still design the MPC in Matlab, but then export the run time 
data in elementary (matrix) form. 

RUN TIME CONSIDERATIONS 

Control loops outside of MPC, e.g. the torque-speed controller and any extras desired like drivetrain 
damping, must be implemented in the run time code. All filters, including the Kalman filter, are 
saved in state-space form, so that the state can be retained from one time step to the next. 

When implementing filters outside of MPC, care must be taken not to invalidate the prediction 
model, especially due to phase differences introduced by the filter. A much better approach ideally 
is to ensure the prediction model contains the modes that you wish to dampen, and let MPC achieve 
this via the cost function. Increasing the fidelity of the prediction model without causing over-fitting 
or making the QP too hard to solve is left for future work. In the simulations reported presently, a 
3P notch filter is applied to both generator speed and nacelle acceleration measurements. The filter 
was set quite shallow so as not to introduce much phase lag. 

After each MPC optimisation is complete, although the prediction horizon is 𝑁 = 45 , only the 
temporally first optimised control action is applied. Both actions (pitch and torque) are scaled and 
offset as per (10) and in the case of torque, the stabilising torque is added. 

The controller, constituting the QP and the pre- and post-processing of signals, was attached to 
Bladed via a message-passing system to allow the numerical calculations at each time step to be 
executed in Matlab, while benefiting from the realism of the full Bladed model for testing. All the 
results in the following section are produced in this way. 

On an Intel i7, using only one core, in Matlab, the optimisation step takes around 40 ms. It’s assumed 
running the optimiser in C++ will speed this up, although we must consider the computational power 
of the hardware that the MPC algorithm will eventually run on in the turbine. Exporting the QP from 
Matlab is made relatively easy by the YALMIP function export. 



  TotalControl - Project no. 727680 

 20 

RESULTS 

STEP SIMULATIONS 

The first test of the controller was to run a deterministic wind case, where four steps are applied to 
the incoming wind speed as shown in Figure 6. Then the cost function was modified, and the same 
simulation run again to compare the impact of the cost function values. The blue lines in all the 
following figures show the results of the base case, i.e. 

 

𝑄𝑦 = [

1
0

1
1

] , 𝑅 = [ 0
1

] (20) 

The matrices in (20) can be interpreted as applying equal cost to generator speed, pitch rate, nacelle 
acceleration and torque demand, with the obvious caveat that these variables are all subject to 
scaling and they represent different units. Zero cost is applied to the pitch angle measurement and 
pitch angle demand. 

 

Figure 6: Steps in wind speed from 9 m/s to 13 m/s covering control regions of variable toque and pitch angle 

The following figures show the impact of changing just one element in either 𝑄  or 𝑅  and the 
corresponding change of behaviour of the turbine, as illustrated by the most relevant time series 
from the results. 
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Figure 7: Generator speed response to steps in wind speed for base case (blue) and with higher cost on generator 
speed (red). The initial response (t<30s) can be ignored due to simulation initialisation transients. Higher cost has a 

clear impact on tightening rotor control, e.g. 55 s and 102 s with less overshoot. 

The first cost function adjustment was to double the cost on generator speed deviations. The results 
in Figure 7 show that the turbine operates closer to its nominal speed (409 rpm) with this cost 
function. Note that the error is not halved by doubling the cost, because that would not represent 
the optimal solution, since it would require extreme control activity. 

 

 

Figure 8: Pitch rate response to steps in wind speed for base case (blue) and with higher cost on pitch rate (red). The 
impact is very clear, with much higher damping and much lower overshoot. 

The next test was to reset the cost on generator speed and instead penalise pitch rate by doubling 
its cost function value. Figure 8 clearly shows the impact of the change to the cost function. 
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Figure 9: Nacelle fore-aft acceleration response to steps in wind speed for base case (blue) and with higher cost on 
nacelle acceleration (red). The impact is very subtle but occasionally lower overshoot is evident. 

The next test was to reset the cost and then penalise nacelle acceleration by doubling its cost 
function value. Figure 9 shows that the ability of this implementation of the controller to dampen 
nacelle motion is limited. The reason is clearer when looking at the same results in the frequency 
domain as in Figure 10. Nacelle acceleration is highly affected by many structural modes that are 
removed by the model reduction stage when creating the prediction model. It is therefore not a 
surprise that the cost function has no impact on these modes. Indeed, it can be considered a success 
that only the first tower mode is dampened by MPC with only that mode modelled. 

 

Figure 10: Power spectral density of naccelle acceleration of the results from the test of increasing cost for that 
measurement. A clear reduction is seen at 0.34 Hz – the 1st tower mode. 3P falls at 0.55, where there is very little 
activity, suggesting the filtering works. But many other modes are visible, which are not in the prediction model 

and are therefore outside the capability of the cost function to reduce. 
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Figure 11: Demanded generator torque response to steps in wind speed for base case (blue) and with higher cost on 
torque demand (red). Beyond 80 s the generator torque hits its limit but before then, there are signs that the 

actions are less aggressive when the cost is higher, e.g. 64 s and 78 s. 

Finally, the Q matrix was reset to that in (20) but now the cost on generator torque demand was 
doubled. Figure 11 shows that the torque response is less aggressive with the higher cost. However, 
the torque demand is also driven by the stabilising torque-speed loop, which is not included in the 
cost function because its integral part is used to reject persistent disturbance of wind speeds below 
rated. MPC therefore has limited authority to control torque activity scale, but succeeds at 
responding quickly to transients while respecting constraints. 

TURBULENT SIMULATION 

The step tests above are useful for checking closed-loop damping, overshoot and persistent 
disturbance rejection but clearly the ability to handle turbulent wind fields is essential to turbine 
control. The following results are from a 400 second simulation with a Kaimal turbulence wind field 
of mean 10 m/s at hub height and turbulence intensity (longitudinal) of 21%. There is also a standard 
wind shear with exponent 1/7. The wind speed varies above and below rated, exercising all the 
applied constraints. The cost function is as in (20). 

The results are very promising, especially considering there has been no tuning applied. Taking the 
findings from the step tests, a designer or engineer could easily apply more cost to the variables 
they want to tighten. 
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Figure 12: Results of a 400 s turbulence case showing: rotor average wind speed (blue), hub wind speed (green), 
generator speed, pitch angle, nacelle displacement fore-aft and generator torque. Pitch hits constraint at 40 s; 

torque hits constraint at 320 s; generator speed shows tight control in high tubulence intensity. 
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CONCLUSIONS 
Replacing the entire controller in a wind turbine simulation is a major challenge. Not only does the 
present work achieve that, but it does so without a single manual tuning step and still results in 
satisfactory performance. MPC has the potential to improve wind turbine control because it is a 
framework that suits design through intent: the user is only exposed to parameters that have 
relevant meanings, i.e. the relative penalties for each measurement and the constraints they wish 
to impose. The computations involved to produce actuator demands are hidden and automatic. 

This report gives the theory behind successful MPC and some applied techniques necessary for the 
particular challenge of a wind turbine: a nonlinear, multi-body flexible structure, subject to 
persistent  stochastic disturbance, with only two control actuators, all subject to constraints. 

The results show what can be achieved with this framework, but they do not purport to have 
improved upon classical control yet. MPC for wind turbines has some way to go, with decades of 
developments in classical control to catch up on. Much progress has been made in academia to add 
elements to the framework that handle particular needs for wind, but it is a daunting task, with 
much less explanation than is required to build something from the ground up. On the other side, 
turbine designs have a library of tools and techniques that make MPC seem a distant land. The 
author of the present work hopes to provide something of a bridge between the two. 

Suggested future work includes: 

 Export the QP to C++ for faster run times in Bladed and the option to execute in Bladed Batch 

 Native MPC handling of azimuth depended disturbances, e.g. 3P filters 

 Variable generator speed range for lower wind speeds, e.g. 𝐾𝜔2, rather than constant speed 

 Start-ups and shutdowns 

 Pitch rate, pitch acceleration and torque rate constraints 
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